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FOREWORD

Phase and frequency tracking problems comprise some of the most 1
nettlesome nonlinear filtering problems in the realm of signal processing.
These problems have held the interest of control and communication
theorists at least since 1953/54 when Lehan and Parks, and Youla published
their work on maximum likelihood and optimum demodulation on an interval.
Over the years Cox, Viterbi, Cabn, Forney, and a host of others have
advocated dynamic programming for the solution of nonlinear filtering
problems. Thie research follows that tradition.

Dynamic Programming is advocated as a technique for finding the
maximum a posteriori (MAP) phase or fregquency modulated sequence to pass
through a data set. The key idea is to pose a Markov chain model on the
circle {0,2n) for phase or frequency, and then generate candidate MAP

sequences that are consistent with the data and the a priori probability
structure.
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INTRODUCTION

Phase and Frequency tracking are the classic nonlinear filtering problems.
They arise in narrowband analog communication, data transmission, and spread
spectrum communication. As usually stated, the problem is to obtain a causal
estimate of the phase or frequency based on noisy phase modulated observations.
The best known solutions are phase-locked loops (PLL's).

In any truly nonlinear filtering approach to optimum phase tracking, the
bagic problem is to propagate an a posteriori density, conditioned on an increasing
measurement record, much as is done in Kalman Filtering. Unfortunately, there
exist no finite-dimensional schemes for propagating the exact conditional density
or for propagating a finit2:-dimensional sufficient statistic. One must approximate.

Under this contract we have developed an approach to phase and frequency
sequence estimation (emphasis on the word sequence) that has its logical antecedents
in the filtering philosophy of Youla and the data decoding philosophy of Viterbi.

We have posed amaximum a posteriori probability (MAP) sequence estimation problem
that leads to nonlinear MAP equations not unlike the continuous-time MAP interval
equations. We have derived dynamic programming algorithms to efficiently solve for
survivor phase and frequency sequences that approximate the desired MAP sequence.
The algorithms also provide a handy mechanism for generating fixed-lag phase
estimates, although this is not the problem for which the algorithm is derived.

In a loosely related set of problems we have studied exact likelihood for
autoregressive moving average (ARMA) processes. We have derived fast algorithms
for constructing likelihood, and established interesting connections between the
vork of Wold, Kolmogorov, Wiener, and Kalman. A fast Kalman filter has been realized
in 16-bit aritbmetic on an 8086 microprocessor.

In the sections to follow, ws outline the problems studied and summarize
important results.




STATEMENT OF PROBLEMS STUDIED

We summarize here the main problems studied under this contract.

Phase Modelling. For phase and frequency tracking the first problem to be studied
is one of deriving suitable models for random phase and/or random frequency
modulation.

Dynamic Programming Algorithm Development. Once a phase model is derived, the
next problem is to derive a likelihood function and find a dynamic programming
algorithm to find the maximum of likelihood.

Performance Evaluation for Phase and Frequency Sequence Estimation. The next
problem is to simulate the dynamic programming algorithms on stechastic
data and calculate Monte-Carlo performance results.

Simultaneous Phase Tracking and Data Decoding. When complex data are transmitted
over phage jitter channels, there arises the problem of simultaneously tracking
phagse and decoding data symbols. The problem is to derive a joint likelihood
function for phase and symbol sequences, maximize it with a dynamic program
algorithm, and compute Monte-Carlo performance results.

Maximum Likelihood Identification of ARMA Systems. The problem here is to derive
a fast algorithm to compute likelihood for autoregressive moving average (ARMA)
sequences.

Fixed Point Implementation of Kalman Filters. The fast Kalman gain algorithm is

a fixed point algorithm ideally suited for computation on a fixed point machine.
But the problems of scaling and rounding remain. The question here is one of

deriving scaling rules and calculating rounding error variances in time varying
Kalman filters.




SUMMARY OF MOST IMPORTANT RESULTS

The most important results of this study are summarized below.

Phase Modelling. We have derived phase models for random phase, random FM,
and random chirp modulation. Each model is a Markov chain defined on a
cyclic group. Corresponding correlation and spectral results have been
derived. The results generalize existing results on the spectral theory of
chains, and leave one with the problem of selecting states, transition prob-
abilities, and run lengths to achieve model matching with more conventional
models. The results apply for coherent and noncoherent FM. The figure on the
following page gives a geometric picture of the kinds of phase and frequency
models we have used in most of our work on algorithm develapment, phase and
frequency tracking, and simultaneous phase tracking and data decoding. See
references 1,2, and 3 for additional details.

Dynamic Programming Algorithm Development. The basic measurement model in all
of our work has been the following:

ejﬁt + nt

symbol drawn from a finite alphabet

o
.e

¢t : either a directly modulated phase sequence for which
wve know the transition probability density p(@t 1/(lt)
or a function §(J, ) of a frequency sequence +
W, for which we krfiow the transition probabilty density

Pl /o)

n, @ @ sequence of independent and identically distributed
normal random variables

With this model we have derived expressions for likelihood and found dynamic
programming algorithms for exactly maximizing or approximately maximizing
likelihood. Generally the algorithms take the form:

max max [LK-I + 1n p(¢K/K-1) + g(QK)]

’K’OK—I ¢1’ ot oK—Z

The function g(.) depends on the details of the problem. See references 1,2,
and 3 for details about selecting g(.) and implementing the algorithm on a
finite trellis. The function L is likelihood.

It is our opinion that a variety of filtering problems in signal and image
processing can be reformulated as sequence or interval estimation problems
for which likelihood can be derived and for which algorithms can be found
for approximating the maximum.




/ . p(0,/0,)

AN

N s

Constant Phase Random Walk Phase

zt = e‘wt + nt

Z, > (01, ¢2, ¢K)

- /"‘ TTe—
: :
3
\
z
h !
1
p(h)l/“\z)
/
yd
~ s
Constant Frequency 2, = j¢t .0y Random Walk Frequency

ot
zt--(tl. [ PO ¢K)
PHASE AND FREQUICNCY [ODEL G

PR

ks i e

o1 e o g 2 w0 S R




Performance Evaluation for Phase and Frequency Sequence Estimation. Our
results are nicely summarized on the graphs of the following pages. The
first compares estimation error variance for the dynamic programming (or
Viterbi) solution with a host of other algorithms ranging from the phase
lock loop to the point mass filter and the Fourier coefficient filter.
The results apply to the problem of random walk phase tracking.

The next graph shows output SNR versus input CNR for sinusoidal modulation
of a carrier. We have adapted our random walk FM frequency tracker to this
problem and compared its performance with linear prediction trackers, and
the trackers of Tufts and of Toomey and Short.

Our performance results indicate that sequence estimation by the method of
dynamic programming to maximize likelihood on a finite trellis provides a
vay of improving on the performance of more classical causal estimators.
This improvement can be significant at low SNR.

Simultaneous Phase Tracking and Data Decoding. The performance results for

this problem are contained in Reference 2, where a variety of binary, phase
shift keying, and quadrature shift keying communication problems are considered.
The third figure in the sequence of three figures that appears on the next
three pages shows just one of the many examples contained in Reference 2.

The graph shows how two simultaneous phase trackers and data decoders, namely
the Viterbi tracker and the jitter equalizer, achieve performance very close

to that achievable under coherent phase conditions. The results apply to

the decoding of B-ary phase shift keyed symbols.
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Maximum Likelihood Identification of ARMA Systems. We have followed the lead
of Akaike and Anderson and Moore to write down the innovations representation
that reproduces the second order statistics of a stationary ARMA sequence. We
have then associated the gain of a Kalman filter with the triangular square
root of a Toeplitz matrix to rederive Morf's fast Kalman filter algorithm.
The result is a fast algorithm for implementing likelihood. The results are
summarized in References 4 and 5.

Fixed Point Implementation of Kalman Filters. Beginning with the innovations

representation of a stationary ARMA sequence, we have derived scaling rules to
prevent overflow in time varying Kalman filters and derived formulas for
rounding error variance. The scaling rule is

(k)¥ g2™]
s(k) ° g

s8(k): inverse of time varying scalé constant

Cn(k,k)!5 : (k,k)th element of the state variance matrix

¢ ™!

dynamic range of the fixed point representation

S : design parameter that allows designer to control
the probability of overflow

This formula generalizes the results of Mullis and Roberts to time varying
cases.

The figure on the follbwing page illustrates our experimental setup for
implementing the Kalman filter on an 8086 microprocessor., The figure on

the next page shows a typical simulation showing performance on the fixed
point machine with that achievable on a floating point machine. The results
apply to one-step prediction. The circles highlight places where the

fixed point and floating point results differ by more than 1 bit in 6.
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Modulo-2w Phase Sequence Estimation

LOUIS L. SCHARF, sentor MEMBER, 1888, DENNIS D. COX,
AND C. JOHAN MASRELIEZ, MEMBER, IEEE

Abstract—The probabilistic evolution of random walk on the circle is
studied, and the results are wsed (o derive a maximum o posterion
probebliity (MAP) seguence estimator for phase. The sequence estimator ks
trackes for tracking phase on s finke-dimensional grid In
—w,9). The algorithm is shown to provide a comvemient method for
fixed-ing phase estimates. Performance characteristics are pre-
and compared with several published nonlinear filtering algorithms.

I. INTRODUCTION

tracking is the classic nonlinear filtering problem. It
narrowband analog communication, data transmission,
and spread spectrum communication. As usually stated, the
problem is t0 obtain a causal estimate of the phase based on
noisy phase-modulated observations. The best known solutions
are phase-locked loops (PLL's).

In any truly nonlinear filtering approach to optimum phase
tracking, the basic problem is to propagate the a posteriori
density of the phase, conditioned on an increasing measurement
record, much as is done in Kalman filtering. Unfortunately,
there exist no finite-dimensional schemes for propagating the
exact conditional density or for propagating a finite-dimensional
sufficient statistic. One must approximate. The interested reader
may consult [18] for a review of the best known techniques or,
better yet, go directly to the appropriate source [1]-[13].

In this correspondence we propose an approach to phase
Sequence estimation (emplmns on the word sequence) that has its
logical antecedents in the filtering philosophy of Youla (2] and
the data decoding philosophy of Viterbi [14]. We pose a maxi-
mum a posteriori probability (MAP) sequence estimation prob-
lem that leads to nonlinear MAP equations not unlike the
continuous-time MAP interval equations. Fortunately there ex-
ists a dynamic programming algorithm to efficiently solve for
survivor phase sequences that approximate the desired MAP
sequence. The algorithm also provides a handy mechanism for
generating fixed-lag phase estimates, although this is not the
problem for which the algorithm is derived. As is common in

i
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most of the current communications literature we call our dy-
namic programming algorithm a Viterba algorithm.

Cahn [15] has suggested that phase may be tracked with delay
in order to extend the so-called threshold. He proposes a Viterbi-
like algorithm for tracking carrier phase sequences whose reali-
zations satisfy dynamics constraints. There is certainly a philo-
sophical link between Cahn’s work and ours. In fact it was
Cahn’s paper that first aroused our interest in phase sequence
estimation. However the approaches are really quite different.
Ungerboeck [16] has proposed an algorithm for phase tracking
that makes use of a delta-modulation approximation to the
phase sequence and an approximate version of the Viterbi algo-
rithm. Tufts and Francis [17] have also recently proposed an
algorithm for obtaining smoothed phase estimates.

II. THE BasiC PROBLEM
Let {Z,} denote the complex observation sequence

Zy=e/ N, k=12,
where
k= U +jVis Ny LLN, forkosl,
U : R(0,02), Vi:R(0,03),
Uiy, for all &,1/, )

{®:} is a discrete-time phase sequence to be discussed shortly
and {N,) is an additive noise sequence of independent identi-
cally distributed (i.i.d.) normal random variables. Our notation is
that N,‘.LLN, means N, and N, are independent, and
U,: N(O, a,)mdnentesdm U, is a normal random variable with
mean 0 and variance o2. The sequence {Z,) may be thought of
as a complex representation for the sample values appemn; at
the output of a quadrature demodulator. The problem is w0
estimate a realization of the entire nce (D)5, say ($:)F,
from the measurement record (z,)7. It turns out that this
formulation also provides a convenient way to generate a se-
quence of fixed-lag estimates. However, we emphasize that the
basic problem under investigation is one of estimating an entire
sequence, not one of generating a sequence of fixed-lag, fixed-
interval, or fixed-point smoothing solutions. We make the obvi-
ous but important observation that the signal model (1) is
invariant under a modulo-2e transformation on the phase.

RANDOM WALK ON THE CIRCLE AS A MODEL FOR
PuASE NOISE

The first, seemingly natural, choice for a random phue model
is the Wiener process W(r) with incremental variance of. This is
the most commonly used model for random phase acquisition.
Most of the results in this correspondence may be obtained in a
forma{ way using this phase model, but certain technical difficul-
ties arise. First, there is no stationary distribution and, second,
there is no rigorous way of defining a unique conditional proba-
bility for transitions from a modulo-2# value of W{(¢) to another
modulo-2# value at a later time ¢+ 7. The fatter difficulty is
particularly troublesome as one of the crucial parts of our
modulo-27 phase sequence estimator 1s a transition probability
matnx that characterizes phase transiions between modulo-2w
values. By modeling phase as a random walk on the circle we
avoid these technical difficulties. Other authors (see for example
[7D) have also noted that the circle is the appropriate domain on
which to study modulo-2« type sequences.

Let @(r) be a random walk on the circle, taking values in
[~ =, ). Denote by the function p(¢,/¢,) the conditional density
of a transition from the value ®(s)=¢, at time s to the value
O(N=¢, at time ¢ >s. This conditional density satisfies the

0018-9448 /80,/0900-0615$00.75 © 1980 |EEE
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partial differential equation (20}

3 1, 9

2P O/e)= 5% &;P(%/%) Q)
where of is the infinitessimal variance. This equation holds in
the strip —#< ¢, <w, t>s, for any fixed —7<¢, <w. The
boundary conditions are

iim P(¢I/¢l) =8(¢, — &),
P(ﬁ - 7/¢:) -P(¢1 - "/¢1)v

(] 9
6¢.P(¢' n/é,) a""p(tl’. 7/4,). 3)
where 8 is the Dirac delta function. We are using the convention
that ¢(¢) denotes a random variable and ¢, a realization. When
the context is clear and there is no danger of confusion we will
sometimes make no distinction in notation between a random
variable and its realizations. The same cautionary note holds for
the discrete-time random variable @, and the realization ¢,.
The solution for p(¢,/¢,) is

P(#/#)= ————
\ﬁ"é(l—s)
2_ exp{—;og(%;;(@—m—nzw)’}- @

It is easily seen that the process ®(¢) is conditionally approxi-
mately R(¢,, ad(1—3)), given ¥(s)=¢, for small 7—s. An cigen-
function expansion of the following form is also useful:

P#/0)=3 T exp(-nad(1-s)/Dexp(in(=4).

)

This is simply Poisson’s summation formula for (4). From this
expression it is clear that ®(#) becomes uniformly distributed as
t—s3—o0. Equation (5) has also been noted in [7).

Consider the discrete-time sequence {®,]} obtained by sam-
pling ©(r) at the periodic sampling instants f=kT, k=0,],---.
Call ¢, a realization of ®,. The transition density from ¢, to
#, is found from (4) with 02=0dT to be

p>

W ne—w

P(Os/bs_ )= e"P{‘z_l,(¢k"¢A-|"'2')z}-
o,

(6)

By the Markov property of ®(¢) it follows that (®,) is a
Markov sequence for which the joint distribution of {®,){ may
be written

K
P((M)f)"kl;lf(’n/%—l)- )

where
’(’I/’O): U[_" ')'

and the notation p(¢,/¢g): Ul — =, v) indicates that &, is uni-
formily distributed on [ —#, #). Other choices are also admissa-
ble: for example, p(¢,/¢9)=8($, —¢y) with ¢y known corre-
sponds to a given initial phase.

One may obtain the same discrete-time model for {®,) by
considering &, to be a modulo-2x version of the following
discrete-time random walk:

9.-9,,_,+W,, W..LLW,'O"I(#I.

W,: X(0.03).

op=odT. (8)
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I'he modulo-27 version of 6, . call 1t ;. may be written
o, = 9‘ ’ %)

Given ©, _, =0, _,. the random variable 8, 1s "N (8, _,.0%.). As
8, is a modulo-27 version of 8, it follows that the conditional
density of ©,, given 8, =8, ,. is the folded normal density of
(6). For this reason we will often call the discrete-time process
on the circle (®,) a modulo-27 version of the discrete-time
random walk {8, }.

In Section VII we discretize the phase space | — 7, 7) (o phase
values £, m=0,--- M 1 with M odd. [t is then necessary to
characterize the transition probability from £, o £, for all M?
pairs of (§,.£,,).- We chouse for our defimtion of this transition
probability

0,=60, +W,.

P(os=8m/ s 1=€)=bp(bs =&/ bu .1 =§,) (10)
with b, selected so that
M-
Eoi(¢¢-£./¢p|-£,)-l. 1=0,1,--- ., M—1. (11)

The sum on 2 in (6) must, of course, be truncated. This trunca-
tion may be selected to give the desired accuracy before the
algorithm of Section VII is run. There is no series truncation
whatsoever in the algorithm itself.

There is an important symmetry property of (10). If the £, are
equally spaced points on [—m, ), for example §,=/2%n/M—
(M- 1)u/M, the function § depends only on |£,,—§,|. Thus if
the values of (10) are organized into an M XM matrix of
transition probabilities, the matrix is Toeplitz. We may compute
the M-dimensional vector @=(Jo, §1," " - . a— 1) With Gy =p(d,
=£o/$x—1=£,) and obtain any value of 5($, =£,./¢, -1 =§;) as
g, with n=|m—!|. In this way only an M-vector of transition
probabilities need be stored for cyclic reading.

IV. THe MAP SEQUENCE ESTIMATION PROBLEM FOR
MODULO-2 7 PHASE

Consider the following maximization with respect to the mod-

ulo-2x phase sequence {¢ )}

max‘p({n)f’{m}f '
[ ]

(12)

where p(-,-) is te joint density function for the K measure-
ments {z,)§ and the X modulo-2# phase values {¢,)}. Maximi-
zation of this joint density function is equivalent to maximi-
zation of the a posteriori density p({$,)}¥/{2;)¥. The joint den-
sity in (12) may be written

P({z)7- (80)7) =P ({2177 {06} V)P({#0)1)

K
"’(("}f).l-llm"('”"""z)' (13)

where the last line follows since the N, in (1) are i.i.d. normal
random variables and because, conditionally,

P(2/91): R,y e/, 02). (19)

Here %, (e/*+, o) indicates that the conditional density of the
complex random variable Z, (conditioned on ¢, ) is normal with
mean e/*: and variance o

Mo o)=(2na) " expf - Lstn-emit). s

Dropping phase independent terms we may write the MAP
sequence estimation problem as

max [y
TN

5.
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where
. &
lx= ,Re T At D Inpidi/d D). (16)
0y kel k=l

A x is the phasc-corrected vector

A K
AK- 2 (‘kf,(h ") 2 zke‘l‘n’
k=1 k=1
and ¢, and ¥, are, respectively, envelope and phase variables:
Zy=cye’/N, Y, E[-7,7), ¢, €[0,00). It is clear from this form
that the MAP phase sequence will be one that stays reasonably
close to the noisy phase variables y, (to make cos(y, — ¢, ) large)
while also maintaining a trajectory that is a priori reasonably
likely. Thus the MAP sequence strikes a balance between what
the noisy data y, says the phase is doing and what the transition
probabilities p(¢,/¢,_,) say the phase can do. When the en-
velope ¢, is large there is more of a tendency to believe the
measured y,. This curious effect may be explained by noting
that the phase statistic ¥, is a modulo-2# unbiased estimate of
¢, with a variance that decreases approximately inversely with
increasing ¢, [18].

an

V. CHARACTERISTICS OF THE MAP SEQUENCE
Given the envelope and phase variables {c;}¥ and (y,}¥, the

-

MAP phase sequence {$,}Y may be obtained by equating the
derivatives of I’y to zero:

Cl - e ] . -
a—hlﬂl’(h/ﬂ—l)"' 'mlnl’(ﬂu/‘h)

+ I (A=A )=0,  k=1,2,---,K. (18)
[ ]

The boundary conditions are I,=0 and

D e e(di/b)=0, -
?2) %lﬂp($x4l/$x)'o-

Condition 1) simply reflects the fact that p($,/¢y) is uniform on
(-, 7). Condition 2) is a mathematical convenience that allows
us to put all the equations of (18) in the same form. Of course ¢
and ¢, are not computed from the data (c,}¥ and {y,)¥.

Equations (18) are nonlinear equations with two-point
boundary conditions. They are analogous to the continuous-time
MAP ecquations obtained for phase tracking on an interval.
While we cannot solve the equations of (18) expiicitly we can
make some very interesting observations regarding the properties
of the MAP phase sequence.

It is easily verified from the conditional density of (6) that

) , 3
m’lnl’(ﬂu/ﬂ)" FFyom Inp(#ssi/os).  (20)

Therefore when the X equations of (18) are summed and the
boundary conditions applied, all terms involving In p($, , ,/é:)
cancel. The sum on the terms involving Im(A, -~ A,_,) tele
scopes, and we are left with the result

ImA,=0. Q@n
Here Ay is Ay with ¢, set to the MAP estimate ¢, for k=
1,2,---, K. This allows us to make the following observation:

while maximizing the objective function I'y, the MAP sequence
{#:)¥ yields a maximum value for I’y of

x
PK'GL,RC Ae+ *2' |np($..|/3.) (22)

with the property that Im A, =0. This property is illustrated in
Fig. 1. We note that there are many other sequences that satisfy

ot i - - R

617

h

G & a 3‘ Not Shown

Fig. 1. Nature of the MAP sequence.

the condition Im A =0 (e.g., the sequence of maximum likeli-
hood estimates ¢, =1, ), but these sequences do not also maxi-
mize T.

VI. THe MAP SEQUENCE POR FIXED PHASE ACQUISITION

Suppose the underlying phase sequence (@, )}¥ is known to be
a constant sequence with the value of the constant uniformly
distributed on [—w, #]. In this case the MAP sequence estimate
is identical with the maximum likelihood (ML) estimate of an
unknown phase parameter ¢ in a complex normal model. For
this reason, and for the insight it gives into phase estimation, we
include in the following paragraphs a short discussion of con-
stant phase and envelope models. The inclusion of an unknown
envelope ¢ generalizes the discussion without changing the na-
ture of the phase estimate. This follows from the fact that the
phase estimate is uncoupled from the envelope estimate. The
converse is not true.

Consider the joint density function for the data (Z,)¥, para-
meterized by the envelope ¢ and the phase ¢:

LY
‘(“*’”'W“"[‘z—f,:E."*'“”"} @)

X
=d(¢, c)h({z,)f)exp{ -G%Re ce‘l',;' z,} (24)
where

d(é,c)= (25)

exp - 7).

(2702)" 2,

! é‘lz.l’}-

20}

h(m:‘)-exp{ -

It follows from the factorization theorem {21, p. 115] that the
complex statistic K~ 'EX_, Z, is sufficient for the parameter pair
a

(c.¢). The ML estimate for the composite parameter a = ce/*

X
a=K"'Y z,. (26)
kel
This ML estimator is consistent, unbiased, efficient, and mini-
mum variance unbiased. The corresponding ML estimates for ¢
and ¢ are
émK! .

K
2 2
kwil

K
é=arg 3 z,. 27

k=)




TEEE TRANSAGC TIONS ON INFORMA TION THEORY, VOL 11-2600 NO- S, SePTeMpiR 1980

Fig. 2. MAP estimate for fixed phase acquisition.

Let ¢ and & be the estimators corresponding to the estimates
¢ and ¢. The estimator € is consistent, unbiased, efficient, and
minimum variance unbiased. The phase estimator & is not
efficient and no efficient estimator exists. It is consistent but
biased. However it is modulo-2 7 unbiased, which is the property
we want. The phase estimate ¢, also obtained in [8] and {17] in
different ways, is illustrated in Fig. 2.

Define the modulo-2# estimator error Ad=(d—¢)mod 2.
We may write

K - -
K'Y Ze #mle A mlet®,
k=1
The statistic K~'SFX_,Z,e~# is R(c, 02/K). The Jacobian of
the transformation between (C, Ad) and K~ 'S5 ,Z,e/* is C.
Therefore the joint density of & and A% is

é 1
2'.,,*/1(“"{ 202/K

(28)

8(é,8¢)=

Iée/“-cP]

é 1
= exp —
2w0/K 7 262/K

[c'*—zcécos(A&)ﬂ’]}.

(29)

This r sult is equivalent to [22, eq. (9.46), p. 413] with ap-
propriate change of notation. In (29) it is assumed that —# < Ad
<#. On this interval g(c, A¢) is symmetrical about zero and
therefore unbiased. We emphasize that & is only modulo-2#
unbiased.

VII. THE VITERBI ALGORITHM

The MAP sequence estimation problem is stated in (18). Note
that T, satisfies the recursion

=D+ %Q Cos(‘l’k“i’k)*'lnl’(%/'h- 3

”

ry= o’l,‘ ¢y cos(yy = ¢) +1n p(d,/dy).

The so-called path metric is

;I';Ct cos(yx — ) +In p(d4 /i - ). an

The maximization problem for obtaining the MAP phase
sequence may now be written

1
max max Ty_,+Inp(éx/dx-1)+ = cx cos(yx —¢x) |-
{#)x 1l {mh o,

(32)

This form leads to the following observation: the maximizing
trajectory (call it (¢, }¥), passing thl:ouih fx- ) ON its way 1o ¢4,
must arrive at ¢, , along a route (¢, )7~ * that maximizes I’y _,.

\
§,-6%/7 L “ar 2
G H
\ L
s <t
.
by
&
L)
R

: 4/ 74
f. v LT 9% PN 38
&

€ 2w/7 wa?

te
a \
€0 Re€,.6,: &) <
: )

& r-2w/?

£ eoar/7

Eer-6w/7

Fig. 3. Phase trellis illustrating evolution of surviving phase tracks

For if it did not we could retain é,_, and éx and replace
{#x )52 with a different sequence to get a larger value for I, It
is this observation which forms the basis of forward dynamic
problem.

The trellis of Fig. 3 illustrates how the maximization of (32)
proceeds. Tabulated values of p(¢,/$;. ) are stored in a square
array (or vector which is read cyclically) whose dimensions
depend upon how finely the interval [ -, #) is discretized. Let
EXE, with Z=(§,}¥, be the finite-dimensional grid for which
P{®i/ds ) is defined. That is, ¢, is assumed to take on only
the values ¢, =§,, I=1,2,---, M, for each k. Let T,(£,,£,,) be
the value of the metric I, corresponding to a phase trajectory
{#,)} which terminates at phase-state £, at stage k, after passing
through stage £,, at stage k— 1.

The algorithm begins with a computation of I (§,,§;), I=
1,2,---, M based on measured values of ¢, and ¢,. If all phase
values are equally likely a priori, then In p(é,/¢o) is constant on
all values §,. Otherwise there is some a priori weighting in favor
of some of the {;,. A new measurement pair (c,, ¥,) is obtained
at k=2 and I;(§, £,,) is computed for m=1,2,---, M using a
table look-up (for example in a read-only memory) for the
p(¢1-€l/¢l-£m)' The maximum value of rz(elvem) is de-
termined (over all originating series £,,) and the corresponding
sequence (¢, ¢ .% is saved as a survivor sequence terminating at
§, at stage 2; §, denotes the originating state. The survivor
sequence is labeled with its corresponding length Ty(£,, §,). This
calculation is repeated for each possible value of phase until all
pairs (,, §,) and corresponding lengths Iy (,, §)i=12,--- M,
have been computed and stored (for example in a random access
memory). There 1s a unique survivor sequence corresponding to
each state £, /=1,2,--- M. Caution: In the pair ({,,§,) the
originating state E, depends on £, i.c., §,=§,(£,). The measure-
ments ¢, and ¥, may now be discarded along with all extinct
sequence:. A new measurement pair {c3.y,) is now obtained.
and the procedure continues.

Let (¢,(k). ¢2(k),- - -, p(k)) be the MAP sequence based on
k measurements; this sequence has the maximum value of T,.
The parenthetical notation (k) denotes dependence on measure-
ment interval. In general the MAP sequence estimate (¢(k+
1),- - @r4i(k+1) based on measurements up to stage k+ 1
may differ from the previous sequence estimate at every stage
from 1 to k. However, as a practical matter, one can choose a
sufficiently large depth parameter kg, so that the sequence of
fixed-lag estimates

& aglk)

gives an approximate MAP sequence estimate. Here ¢ ~k(K) is
simply the phase value k. stagzes back. in the MAP seauence

komkg+ 1 kg+2,: - (33)

R
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estimate based on A measurements. In this way one obtams a
phase track with delay ko.

Following Forney [23] we may summarize the storage and
computational requirements for the phase tracking algorithm as
follows.

Storage
A (time index),
6.6 )W i=1.2,--- M (survivor phase sequence
terminating in §, at stage k),
l;((,.é,,- )od=1.2,--- M (survivor metric).
pl&/E) l.m=1,--- M (transition probability matnx).
Initialization
k=1,
ti=¢. {=1,---, M,
. 3 1
Fi(&.8)=Inp(dy=E/do) + 292 2¢  cos(y - &),
[=1,2,--- M.
Recursion
Tisr(€n &) =Ta(bmda) +In p(dp s =&/ 0 =E)
1
+——12¢k¢|°°s(4‘u|“‘fl)v t=12, - M,
20,
minT, , (¢.£.), Im],2,--- M.
min L W& n)
Measurement / Computation
€& (envelope),
% (phase),
cx cos(f— ) +n p(dy =& /by -1 = &) (path metric).

In Fig. 3 typical trajectories for this algorithm are illustrated,
The heavy lines denote survivors and the light lines denote path
metric calculations that are made and then discarded in favor of
survivors. At the third stage all calculations I'y(§,,¢,,) are il-
lustrated with light lines; the heavy line from §, to §, illustrates
that this path gives maximum Iy(§,, £,.) and is therefore labeled
a survivor. Of course §,=¢,. The letters x on the trellis illustrate
sequénces that have survived for a while before being ex-
terminated by the weight of evidence. The very heavy line at
each measurement stage & denotes the current MAP sequence.
The labeling numbers on the heavy paths denote the current
MAP sequence. The sequence of end points labeled with the
numbers is a sequence of phase estimates. Note this sequence of
phase estimates difters from the MAP phase sequence. The latter,
being a smoothing solution, is in fact generally smoother than
the former.

VIII. PERFORMANCE RESULTS

The phase space [ — #,#) has been divided into M= 11 equally
spaced points and the Viterbi algorithm for phase tracking
implemented as outlined in Section VII. The crucial conditional
probabilities p(¢y = £, /¢ 1=£) have been computed as out-
lined in Section 111 and stored in an M vector for cyclic reading.
Random phase trajectories and measurement variables have
been generated according to (8) and (1). The results of several
Monte-Carlo simulations are presented in Fig. 4. Each Monte-
Carlo result has been obtained by running the Viterbi phase
tracker (and the PLL) over 40 different trajectories, each trajec-
tory beginning with a uniformly distributed phase variable at
k=1 and continuing for 500 points. Various values of depth
parameter ky have been used. as indicated in the figure. (See {8]
for a discussion of corresponding statistical sampling errors and
[1R) for additional Monte-Carlo results )

1980 619
‘ .
» FCF (9] Limiting Vorionce #'73
¢ LQF [y —
o P [10) R
} 6sF 1) .M 1,26 }
o PLL 3
§ vriaineos.0 {2
o VT (MAP
Tabuloted Results ¢ ) J ]
10 loqbl 0 -
] J o®
Trockst 10 log o J
— . Note The VIik,} Results o
FCF 1.6 dB orn Plotted wst to the Lett 41 -
LQF ,l L6 of thew True Positions ot =/
PMF 14 10 logy! 20 ond 3. 12
GSF i20.16,04 13
PLL : 21
VTIR,) | 23,1.5096 {a
VT{MAP) | 0.86
+9
-l - - A A Al A A A {'
-4 -3 -2 -1 0 1 2 _ 3 4 3
10 1og,r . ¢+ Lo o)

Fig. 4. Performance results for o2 /02 =0.01.

In Fig. 4 Monte-Carlo simulation results for the Viterbi tracker
are presented for the parametrizations commonly considered in
the literature  The results are compared with the point mass filter
(PMF) (8], tne Fourier coefficient filter (FCF) {7), the linear
quadrature filter (LQF) [9], and the Gaussian sum filter (GSF)
{13}). Also shown are our simulation results for the PLL. These
results are presented to legitimize the simulation. The Viterbi
tracker makes up more than 1.0 of the 2.0 dB performance gap
between the PLL and an idealized linear tracker. In terms of rms
phase error (in radians), the comparison between the PLL and
the Viterbi tracker goes as follows. The PLL has an rms phase
error of 1.26 rad at r=1.0. The maximum achievable percentage
improvement is 21 percent, corresponding to an ideal filter with
rms phase error of 1.0 rad. The rms error for the Viterbi tracker
operating at r=1.0 with k,=10 is 1.12. This represents an
improvement of 11 percent over the PLL. The results for kq=0
show that (as expected) the Viterbi tracker is not as good as a
PLL as a zero-lag filter. In Fig. 4 the heavy squares denoted by
VT(MAP) (sec the symbol key) correspond to the smoothing
variance achieved when the MAP sequence for a 500 sample run
is used as the phase estimate. The results are averaged over 40
such runs. The tabulated results in Fig. 4 summarize the perfor-
mance characteristics of many different nonlinear phase track-
ers. In the figure, performance results for the Viterbi tracker are
plotted just to the left of their true positions to avoid cluttering
the presentation.

We hasten to emphasize in the interest of fair play that all
results presented here for nonzero kq are in reality smoothing
solutions. Such solutions are expected to deliver the usual
smoothing gains over filtering solutions. This does not detract
from the Viterbi tracker as an attractive alternative in those
applications where a short delay may be accepted in exchange
for 1-2 dB performance gains.

IX. CONCLUSIONS

We have derived a Viterbi algorithm for obtaining approxi-
mate MAP phase sequence estimates on [ ~#, #). The algorithm
is simple and fast by nonlinear filtering standards and ideally
organized for hardware implementation. More dramatic perfor-
mance gains than those illustrated in Fig. 4 may be achieved
when phase fluctuations are severe, i.c., when 02/02:»0.01. The
reader is referred to [19) for applications of these results to phase
coherent data communication.
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DYNAMIC PROGRAMMING FOR PHASE AND FREQUENCY TRACKING
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Abst ract i

The techniques of dynamic programming have found a variet:
ot successful applications in signal and system theory. In this :
paper we show how two knotty nonlinear filtering problems--phase

k

and frequency tracking--may be formulated and solved as forward 1

dynamic programming problems. The resulting solutions are fixed E
interval smooths in which a most likely sequence is passed

through a data record. [

!

1. INTRODUCTION

LY

3

Phase and frequency tracking problems comprise some of the ;

most nettlesome nonlinear filtering problems in the realm of ¢

signal processing. These problems have held the interest of :

control and communication theorists at least since 1953/54 when s

lehan and Parks [1) and Youla [2] published their work on maxi-
mum likelihood and optimum demodulation on an interval. Over
the years Cox [3], Viterbi [4]), Cahn [5], Forney [6], and a host
of others have advocated dynamic programming for the solution of
nonlincar filtering problems. This is a paper in the same tra-
dition,

In this paper we discuss forward dvnamic propramming as a
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techmigne tor tinding the maximam o pont g o CMAPY plhasie o
trequency modulated sequence Lo pasis throupd o data set The key
idea is to pose a Mackov chain mode) on the civele 0,20 tor
phase ot frequency, and then generate candidate MAP sequences thae
are consistent with the data and the probability st rue-
ture. More details may he found in |7} & |8},

2. PHASE SEQUENCE ESTIMATION

Figures 1 & 2 depict two classical pbhaie estimation problemg:
constant phase estimation and random walk phasce estimat fon.  In
these fignres and throughout the paper 7 Logee .,zll d(-nglus the
data set and the ny k=i ,i+l, [t are mnnpi‘ *  i.i.ds N(O, r.v,s,
A Markov transition density (or probability mass function) is
denoted p(+/+); f(*,*,...,*) denotes a joint density function;
{-] denotes integer part.

@

Figure 1: Constant Phase Estimation
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Figure 2: Random Walk Phase Estimation
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Sroblem 2O Constant Plee Chipare 1)

This problem fnvolves mapping the data set Z into o phase
timate o [0,20) when measurement . are pencrated according to

20 exp(jé) + oo ke [ 1,2,0..,11
11 is a stralghtforward excerise in maximum likelihood (ML) theory
to show

b = arg . 2z
k=1 ¥
\s shown in Figure la this estimator maximizes the log-likelihood
ol iz R 3

1’ et

H2)

¢ = arg max vn t"t(zl....,7t
wometrically, the estimator is obtained by piecing measurements
together, feather-to-tip, and measuring the angle to the resulting
vector. This is illustrated in Figure lb. The diagram in Fig-
ure lc_illustrates that if each measurement is rotated through an
angle ¢, and each rotated measurement added to the previous, the
result is purely real.

Problem ¢1: Random Walk Phase (Figure 2)

Here the problem is to map the data set Z into a phase se-
quence estimate {01,...,0t}4[0 2u) ¢ when measurements are gener-
ated according to

Z, = exp(ie) +n k=1,2,...,t

k
p(¢k/ok_1) given

As shown in Figure 2a, the MAP phase sequence maximizes the log-
likelihood of (zl.....zt):

(61....,6t) = arg max vn ft(zl,....zt,ol,....ot)

(@k l

Here f is the joint denslty of the measurements and the phase
sequence. The likelf{hood vt = log I'L may be written

t
= - oz -u + log p(dnt/OL_l)
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ol . takes values in o diserete set (say qf o 001, ,0-1)
e can implement o o dvnamic programming algorithm on the lattice
af Figure 2h to decode the MAP sequences,  See | 7] tor details of
the algorithm and o« comparison of performance with other phase
estimation algorithms.

Vo FREQUENCY SEQUENCE ESTIMATION

Figures 3 and 4 depict two classical trequency estimat fon
problems:  constant frequency estimation and random walk I requency
cobimat jon,
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Problem 0 Constant Freguency Estimati

on (Figure 1)

fhis problem involves mapping the data set 2, into a fre-
guency cntimate o (0,2 ) when measuremeats are gencrated according
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it g straighttorward exereise in ML theory (o uow
arg max (XGo)!
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X(w) = 7 2z
k=0

jkew
(4

K (Fourier transform)

A+, shown in Figure 3a this estimator maximizes the log-likelihood
o izo,....ztl:

V2, jw)

W = arg max f(z(),... ¢

w

An obvious approximation strategy, illustrated in Figurc 3h,
is to zero-pad the measurements and estimate w as the DFI cell
where a maximum occurs:

Q-1 j2nqk/Q

w = arg max ) zke- .
wg=a27/Q k=0

’roblem wl: Random Walk Frequency Estimation (Figure 4)

Here the problem is to map the data set ZE into a frequency

sequence estimate {w eeepud le [0,2n) [t/N when measurements
191 o (t/N]

are generated accord

2, = exp(jw[k/N]k) tn, k=0,1,...,t

PO Ny m)-1)  Biven

As shown in Figure 4a the MAP phase sequence maximizes the log-

likelihood of {2z S

0" t
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Heve X bs DFY over the lll' data block o N samples. So it oy
takes values In a discrete set (say q20/Q,q=0,1,...,Q-1), oneltl
can implement a dynamic programming alporithm on the lattice of
Figure 4b to decode the MAP sequence.  See (8] for details.

4. CONCLUSIONS

The problems discussed here generalize. The basic tdea s
to select states and transition probabilities to characterize an
underlying probabilistic structure, and then to assign charactersg

'Nk j""k/le
(such as e ore ' ) to the states. The resulting sequence
estimation algorithms are attractive because storage goes like Q
(number of states) and computations are naturally parzllel.
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A Dynamic Programming Algorithm for
Phase Estimation and Data Decoding
on Random Phase Channels

ODILE MACCHI, MEMBER, IEEE, AND LOUIS L. SCHAREF, SENIOR MEMBER, IEEE

Abstract— The problem of simultaneously extimating phase and decod-
ing dsta symbols from baseband data is posed. The phase sequence is
assumed 10 be & mandom sequence on the circle, and the symbols are
assumed to be equally likely symbols transmitted over a perfectly equalized
channel. A dynamic programming algorithm (Viterbi algorithm) is derived
for decoding a maximum a pesteriori (MAP) phase-symbol sequence on a
finite dimensional phase-symbol trellis. A new and intevesting principle of
optimality for simuitancously estimating phase and decoding phase-
amglitude coded symbols leads to an efficient two-step decoding procedure
for decoding phase-symbol sequences. Simulation results for binary, 8-ary
phase shift keyed (PSK), and 16-quadrature amplitude shift keyed (QASK)
symbol sets transmitted over random walk and sinusoidal jitter channels are
presented and compared with results one may obtsin with a decision-directed
sigorithm or with the binary Viterbi algorithm introduced by Ungerboeck.
When phase fluctustions are severe and when occasional large phase
fluctuations exist, MAP phase-symbol sequence decoding on circles is
superior to Ungerboeck’s technique, which in turn is superior to decision-
directed techniques.
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I. INTRODUCTION

HASE FLUCTUATIONS can significantly increase
the error probability for symbols transmitted over a
channel that may or may not have been equalized. This is
especially true for phase shift keyed (PSK) and quadrature
amplitude shift keyed (QASK) symboling, in which case
accurate phase discrimination is essential for symbol de-
coding. Even when the receiver contains a decision-directed
phase-locked loop (DDPLL), performance loss in signal-to-
noise ratio (SNR) with respect to a coherent decoding
system can be in the range 5-10 dB. This fact is established
in [1) for practical symbol sets and typical values of the
phase variance parameter and symbol error probability.
On telephone lines, linear distortion and phase jitter
dictate the use of a channel equalizer and some kind of
phase estimator to achiove high rate, low error probability
data transmission. A common approach to phase estima-
tion and data decoding is to use a decision-directed algo-
rithm in which a phase estimate is updated on the basis of
old phase estimates and old symbol decisions. The DDPLL
of [5] is a first-order digital phase-locked loop (PLL) in
which the phase estimate is updated on the basis of a new
measured phase and an old symbol decision. In the jitter
equalizer (JE) of {3) and [4] a complex gain is updated
according to a simple decision-directed stochastic ap-

0018-9448 /81 /0900-0581$00.75 ©1981 IEEE
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proximation algorithm. The complex gain is used to scale
and rotate the received signal, thereby correcting phase
jitter and normalizing rapid fading variations. Although
there is no explicit interest in phase estimation itself in the
JE, it is possible to interpret the structure as an adaptive
gain-phase correcting equalizer.

Both the DDPLL and the JE are very simple to imple-
ment, but apparently neither achicves optimality with re-
spect to any statistical criterion for symbol (or data) decod-
ing. Furthermore, neither the DDPLL nor the JE is opti-
mum for estimating and/or correcting phase. Both are
zero-lag phase estimators that cannot benefit from future
signal samples. Therefore, an important question to be
answered is whether or not symbol decoding can be im-
proved using a better phase estimator. The answer, based
on the results of [1] and this paper, is that significant
improvements can be realized when the phase fluctuations
are severe if one is willing to pay the price of an increased
computational burden. In practice, cases of severe phase
fluctuation can occur in high data rate PSK and QASK
systems in which the angular distance between symbols is
small.

In [1] Ungerboeck recognized the potential of maximum
a posteriori (MAP) sequence estimation for jointly estimat-
ing phase and decoding data symbols. A path metric was
derived and its role in a forward dynamic programming
algorithm for obtaining MAP phase-symbol sequences was
indicated. Because of the way phase was modeled in [1], the
dynamic programming algorithm could not be solved di-
rectly. Ungerboeck approximated the phase sequence as a
process that could make discrete binary jumps and then
derived a dynamic programming algorithm for decoding
likely paths around a developing most likely path. The
result is a tree-search algorithm which may branch left or
right but never go straight. He obtained performance re-
sults that were on the order of 3 dB superior in SNR to the
DDPLL in a 16-QASK system, at interesting values of the
phase variance parameter. We call the algorithm of (1] a
discrete binary Viterbi algorithm (DBVA). The reader is
referred also to 5] and [6] for discussions of other subopti-
mal, but computationally tractable, algorithms for simulta-
neously estimating phase and decoding data symbols.

In this paper we observe that baseband data is invariant
to modulo-2# transformations on the phase sequence. This
motivates us to wrap the phase around the circle, so to
speak, and obtain folded probability models for transition
probabilitics on the circle. When the phase process is
normal random walk on the circle, then the transition
probabilities are described by a folded normal model. This
model has also been used in [7) and [8]. It is then straight-
forward to pose a MAP sequence estimation problem for
simultaneous phase and symbol sequence decoding as de-
scribed in [8] and [9). The basic idea is to discretize the
phase space [ —m, 7) to a finite dimensional grid and to use
a dynamic programming algorithm (Viterbi algorithm) to
keep track of surviving phase-symbol sequences that can
ultimately approximate the desired MAP phase-symbol
sequence. The MAP phase-symbol sequence itselfl is the
entire sequence of past phases and symbols that is most
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likely, given an entire sequence of recorded observations. It
is this use of “future” and “past” received signal samples
that provides performance improvement over zero-lag
estimators such as the DDPLL. Details of the algorithm
are given in [8] and [9]. For PSK and QASK symbol sets an
interesting principle of optimality leads to an efficient
two-step decoding procedure. With this procedure, compu-
tational complexity is reduced by a factor greater than the
number of admissible phase values per amplitude level,
This amounts to a factor of four for the 16-point QASK
diagram that has been recommended by CCITT for data
transmission on telephone lines at 9600 bits /s. Finally, in
order to make the computation and storage requirements
tractable in the Viterbi algorithm, we use it in a fixed delay
mode, as do other authors. By appealing to known results
for fixed-lag smoothing of linearly observed data, we are
able to intelligently choose the fixed delay. Without signifi-
cant performance loss we decode phase-symbol pairs at a
depth constant of k; = 10. This obviates the need for huge
storage requirements for long sequences. With these mod-
ifications the Viterbi algorithm becomes a feasible, albeit
sophisticated, decoding procedure.

Simulation results for the proposed Viterbi algorithm
(VA) are presented for several symbol sets consisting of
two, eight, or 16 symbols. Several types of phase jitter are
investigated such as Gaussian and non-Gaussian random
walk and sinusoidal phase jitter. The resulting error proba-
bilities are compared with those of the simpler decision-
directed algorithms (JE and DDPLL) and with those of the
DBVA. As cxpected, performance of the VA is always
superior to that of the other systems. On the other hand,
the increase in computational burden is substantial, and
the improvement in performance is not always great enough
to warrent the use of the VA. In our concluding remarks
we discuss situations in which one might reasonably use
the VA or the DBVA rather than a simpler decision-directed
algorithm such as the JE or the DDPLL.

Remarks on Notation:

Throughout this paper LL denotes statistical indepen-
dence. The notation {¢,}¥ will mean the set {¢,, k =
1,2,--+,K}. When the indexes 1 and K are missing (¢.g.,
{#:)), it is understood that K is infinite. The symbol N *
denotes the positive integers. The notation x: N,(p, 0?)
means the random variable x is normally distributed with
mean p and variance 62; N(g, 0%) will also be used to
denote the function (2mo?)~'"2exp {—(x — r)*/20%).
When x is complex, x : N(u, 02) means x is complex with
density N (p,02) = (2mo?) 'exp{—|x — n|}/20%). By
f(x/y) we mean the conditional probability density of the
randon variable x, given the random variable y. Thus
f(x/y) is generally a different function than f(w/z), even
though we use no explicit subscripting such as £, (- /) to
indicate so. We make no notational distinction between a
random variable and its realizations, relying instead on
context to make the meaning clear. A density function for
a random variable, evaluated at a particular realization of
the random variable is termed a likelihood function.
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Fig. 1. Typical signal receiver for data transmission.
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Fig. 2. Symbol diagrams for PSK and QASK modulation schemes.

“Hatted” variables such as ¢, refer always to MAP esti-
mates that maximize an a posteriori density. Finally, it is
convenient to define the function

M o0
gu(x)=M""' 3 1 3 h[x— 20— (m - 1)2a/M]
m=1Il=~-a
(1)

where A(-) is a probability density. The function g,,(-)
plays an important role in our discussion of phase-symbol
decoding on QASK symbol sets.

II. SIGNAL AND PHASE MODELS

Assume complex data symbols {a,} are phase or phase-
amplitude modulated onto a carrier and transmitted over a
channel with linear distortion and phase jitter. The re-
ceived signal—call it y(¢)—is typically processed as il-
lustrated in Fig. 1. The signal y(¢) is passed through a
bandpass noise filter and demodulated with two quadra-
ture waveforms. The resulting complex baseband signal
x,(¢) + jxy(t) is equalized with a complex adaptive
equalizer in order to reduce the intersymbol interference
due to linear distortion in the channel. The equalized signal
is a sequence of samples at symbol rate 1/4 (4 is the
interval between successive data symbols). The output of
the equalizer is a complex sequence x, = x{" + jx{¥ which
is a noisy, phase-distorted, version of the original trans-
mitted sequence. Thus we write

X, =ae*™ +n, k€EN*', (2)
Here, (a,} is the complex symbol sequence, typically en-
coded according to one of the diagrams illustrated in Fig.
2. The sequence {¢, )} represents phase fluctuations (jitter
and frequency drift) in the channel. The two real compo-
nents n§"” and n{Y of the complex noise sequence n, = n{"

+ jn{? are the noise variables in the respective baseband
quadrature equalized channels. The variables n{" and n{?
can be shown to be independent when the carrier frequency
is in the middle of the input noise filter bandwidth and the
additive channel noise is white. If the equalizer is perfect,
then n, is the usual Gaussian, additive noise with zero-
mean. If the equalizer is not perfect, then n, contains a
residual of the intersymbol interferences, and is not Gaus-
sian; nor are successive variables n{", n{') |, - -, indepen-
dent. However, for a reasonably good equalizer, we may
assume that {n,} is a sequence of independent identically
distributed (i.i.d.) complex Gaussian variables. Strictly
speaking, this assumption is valid only at the input to the
equalizer when the baseband equivalent of the input noise
filter and low-pass demodulator is the so-called sampled
whitened matched filter of [10]. In practice, the assumption
of Gaussianity is more realistic than the assumption of
independence for the sequence {n,}. Assuming that the
equalizer of Fig. 1 is perfect, we model the noise sequence
{n,} as follows:

n,=nP+jnP, keN*
" Lin®, ¥ (k1)
AP LLn, ki,

n§’: N, (0,0});

Here 202 is the variance of the complex noise variable n,,
and o? is the variance of each real component.

Consider now the phase distortion (¢, ). The term gencr-
ally reflects two effects, one long-term and the other short-
term. In modern high speed data modems no carrier or
pilot tone is transmitted for locking the local oscillator at
the receiver. Thus long-term large-range linear phase varia-
tions result from frequency drift in the channel which
cannot be eliminated. In addition, nonlinear intermodula-
tion with local power supplies gives rise to short-term

nPinP, kel ®)

nd: N, (0,02).
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Fig. 3. Typical phase fluctuations: phase jitter and frequency drift.

small-range phase variations. The variations exhibit en-
ergetic harmonic content at the harmonics of the funda-
mental power supply frequency. Hence a realistic model
for {¢,) ts
14
¢, = (¢p + 27Bk) +3 A,;sin(2nvkA+p). kEN"
1=1

(4)

where », = 1-50 Hz or »; = /-60 Hz, depending on the
place of use. A typical phase process is depicted in Fig. 3.
The first term in parentheses in (4) is the so-called frequency
drift term and the summation term is the phase jitter. In
practice, the constants ¢, B, {A,. »,. p;}f-, vary with time
kA but at an extremely slow rate.

The spectrum of the phase jitter, i.c., the behavior of 4,
versus »,, has been investigated experimentally in [14]. The
spectrum is roughly fitted by a 1/#? curve. A phenomeno-
logical model for phase having a 1/»? spectrum (like that
of phase jitter at high frequencies) is the Wiener- Levy
continuous time process,

de(1)
da

where {w(r)} is a white noise process. The discrete time
analog is the independent increments sequence

¢, =, +w,. keN"® (6)

where {w,} is a sequence of i.i.d. random variables with
even probability density h(w).! When w,: N (0, 2). then
{¢.} is the so-called normal random walk.

For short-term fluctuations, the model captures, with
appropriate selection of h(w), the correlated evolution of
phase. The main virture of the independent increments
model is that it forms a convenient basis from which to
derive optimum estimator structures which may then be
evaluated against more realistic phase sequences.

Since the measurement model of (2) is invariant to
modulo-2# translates of ¢,. we may represent phase as if it
were a random sequence on the unit circle C or equiva-
lently on the interval {—m, 7). Call ¢, this representation
of ¢,. Note ¢, ., may be writien

S = O T W, (7
where the plus sign denotes modulo-2# addition of real
variables or equivalently rotation with positive (counter-
clockwise) sense on C. The variable w, is a modulo-27
version of w;. ) _ B

The conditional density of ¢, , £4, + w,, given o, I8
A($,,, — #)- Since ¢, , , is a modulo-2 version of ¢, ..

w(r). =0, (5

"That is, A(w) = h(—w).

we may reflect all of the conditional probability mass into
C to obtain the transition (or conditional) probability
density

f($k+|/$k) = I:g h($k+\ - ak - ’2‘”)

=8|($k+| —‘—Pk) (8)

where g, is the function defined in (1). Hereafter, g,(-) is
called the folded density of the phase increments. Usually,
the phase increment is small and its distribution h(-) is
very narrow with respect to 27, Therefore, in the sum of
(8) only one term is relevant and (¢, ., /#;) = h($,+, —
¢,). In the normal case, this implies o, <« 27, where o? is
the variance of w;. As it is cumbersome to carry around the
overbar notation ¢, ,, — ¢,. we drop it with the caution
that from here on ¢, is defined on C unless otherwise
stated. .

In the normal case [7), [8], the density g,(¢,+\ — ¢.)
may be written

x©
gt —#) = 2 No“‘(¢k+l2w‘awz). (%)
1= —o0

This case and the Cauchy case (in which the distribution
tails are much heavier than the normal tails) are studied in
the Appendix. It is shown that g,(x) achieves its maximum
at x = 0 and that it is monotonically decreasing on 0 < x
=

The sequence {¢,}} is Markov. Therefore, we may write
for the joint density of the K phases {¢, }¥

. K-1
f({e00) = T f(o421/4)

f({$:1/90}) £/(9,): the marginal density of ¢,.
(10)

Usually, ¢, is uniformly distributed on C because phase
acquisition starts at k = 1 with no prior information about
its value. By the independence of the n, in (2), it follows
that the conditional density of the measurement sequence
{x, )X, given the phase and data sequences {¢,}§. {a,)}. is

K .
(x/ (e (@) = kljl N, (a,e"* . 0}).
(11)
Equations (8)-(11) form the basis for the derivation of a
MAP sequence estimator. The key element is that {¢,} is &
Markov sequence with a bounded range space [—w, 7).
Discretization of this bounded interval leads to a finite-state

model from which a finite dimensional dynamic program-
ming algorithm can be derived.

111. DECISION-DIRECTED ALGORITHMS

The usual way of dealing with phase fluctuations is to
design a phase estimator and use the estimated phase, call
it ¢,. 1o rotate the received signal as follows:

kEN*. (12)

The phase corrected signal y, is then fed to a decision
device which, in turn, delivers the symbol estimate 4,.

Vi = X IH,
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Typically, the phase estimate ¢, is functionally dependent
on the old measurements { ---,x, ;. x,_,;} and the past
symbol estimates { - - -, d;,. d,-,}. If a carrier or pilot
tone is transmitted as in typical single sideband (SSB)
systems, then ¢, is obtained from a simple phase-locked
loop (PLL). In suppressed carrier systems such as PSK or
QASK systems, the PLL is decision-directed. That is, &,‘ is
updated on the basis of 4, _,. For instance in [5]

St =P + plm [xkﬁtf _”‘]
= ¢, + p,sin(arg x, — argd, — ¢,).
me = el P (13)

where the asterisk denotes complex conjugate and p is a
constant that depends on the SNR. The estimator of (13) is
called a DDPLL.

In the jitter equalizer (JE) of [3] and [4], x, is rotated and
scaled as follows:

Vi = X6y
Gy =Gy +pldy =y )Xt (14)

The complex gain G, is the single complex coefficient of a
one-coefficient rapidly adaptive equalizer. We may think of
G, /|G, | as the phase correction e /*, and |G, | as a
gain correction ¢,. Thus, although there is no explicit
formulation of a phase-gain estimation problem in [3] and
[4]. the net effect of the JE is to correct phase and normal-
ize rapid fading variations. As explained in [4], when phase
fluctuations are large, the JE performance may be im-
proved by setting a constraint on G, that keeps its value
inside a given domain including the complex point (0, 1).

Geometrical Comments

The combined effects of random phase fluctuations and
additive noise may be illustrated as in Fig. 4(a). The
transmitted symbol a, = ¢ (say) is rotated by the ran-
dom phase angle ¢, to give a,e/*. To this is added the
complex noise sample n, to give the measurement x,
defined in (2). For the case illustrated, the resultant mea-
surement is closer to symbol a‘" than to a'® and conse-
quently, with no phase or phase-gain correction, a decod-
ing error would be made. To emphasize the combined
effects of phase fluctuation and additive noise, we have
illustrated a case for which either phase jitter or additive
noise alone would cause no error. See [11] for a probabilis-
tic discussion of this issue. Fig. 4(b) is an illustration of
how a DDPLL works. The angle ¢, is the noisy measured
phase (arg x, ) minus the sum of the phase of the decoded
symbol and the previously estimated phase (arg 4, + (2),().
A given amount p, of this angle is added to c}k as a
correction to get the new phase estimate ¢,,, = ¢, +
BV, Note that only phase is corrected. In the JE both
phase and gain are corrected, offering potential for im-
proved performance. This potential is particularly im-
portant in QASK symbol sets where amplitude errors in x,
can result in decoding errors.

Without With

(a) )
Fig. 4. Geometry of phasc jitter and additive noise with and without
phase correction of DDPLL. (a) Without. (b) With.

IV. MAP PHASE AND SYMBOL SEQUENCE
DECODING WITH THE VITERBI ALGORITHM

The basic idea behind MAP sequence decoding is to find
a sequence of phase-symbol pairs {¢,. a,)}¥ that, based on
the observation sequence {x,}¥, appears most likely. The
application of this idea to data communication was first
proposed in [1] and refined in {9]. The most likely se-
quence, call it {¢,, d,}, is the sequence that maximizes the
natural logarithm (or any other monotone function) of the
a posteriori density of (¢,.a,}¥, given the sequence of
observations {x,}y. Thus we pose the maximization prob-
lem:

max I f({$,)7. (@77 (7). (1)
(e 7 {achi
This is equivalent to maximizing the natural logarithm of
the likelihood function f({x,}¥. {¢,)¥. {a,}¥). obtained by
evaluating the joint density function for {x,}X. {¢,)¥. and
{a,}¥. at the observed values of {x,}¥. Using the results of
(10) and (11) we may write

AT (o (e )
K
= kI;IlNn(ake!m'onz)f(d’k/d’bI) f({ak}f)' (16)
Assuming the {a,}f to be a sequence of independent,

equally likely symbols, using (8), and neglecting irrelevant
constants, we may write the maximization problem as

max T,
(¢A)|K-("k’lk
1 X
Iy =~ 2 lx —ae* P
20" k=1

K
+ 2 In g,(¢, _¢k—|) +1n f(¢,). (17)
k=2

Note that I, satisfies the recursion

Ty =Ty +p. k=23,
Pe = 7 20"2|Xk —ae* P +1ng (o — i)
k=2.3'...

where p, is the so-called path-metric. For convenience, let
us make explicit in I, the last phase and symbol:
Tx(dx. ax). The other arguments {¢,}¥ ', {a, )% ', re-
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main implicit. Then, from (18)
Tx(x: ax) = Tx-y(Px-15 ax-1)

+px(xk, ax dx, $x-1). (19)
Thus the maximizing sequence—call it ({4>k}x, (a,)—
passing through ($x—1» Gx—,) On its way to (@, dx), must
arrive at (¢x 1» dx-1), along a route ({4’/‘}’( L{axd™
that maximizes Ty_,($x_;, dx_,). It is this observation
which forms the basis of forward dynamic programming.
In the actual implementation of a dynamic programming
algorithm, one must discretize the phase space C to a finite
dimensional grid of phase values = = {§,},-,. The func-
tion In g(¢, — ¢,—,) is then defined on the two-
dimensional grid £ X =. However, as discussed in [8] and
[9], the resulting m X m matrix of conditional probabilities
has Toeplitz symmetry which means only an m vector of
conditional probabilities must be computed and stored.

The Viterbi algorithm for simultaneous phase and sym-
bot decoding consists simply of an algorithm which de-
termines survivor phase-symbol sequences terminating at
each possible phase-symbol pair. One of these surviving
sequences is ultimately decoded as the approximate MAP
phase-symbol sequence. The complexity ¢ of the algorithm
lies mainly in the evaluation of the mM possible values of
[ x, — a,e’* |?, for each new measurement x,. Here M is
the symboling alphabet size, and m is the number of dis-
crete phase values. For each calculation of | x, — a.e’* |
there are six real multiplies. Compared to this multiplica-
tion load of 6mM per sample, the determination and
addition of the m possible values of In g,(¢, — ¢,_,) that
appear in (18) is negligible. The determination of | x, —
a,e’* |2 would likely be computed in a pipelined parallel
architecture, while the terms In g,(-) would be read by
appropriately addressing read only memory (ROM). When
short-term phase fluctuations have small amplitude (o,
smail) so that m must be large for accurate phase tracking,
the complexity increases. For example, with M = 8§ and
m = 48, ¢ ~ 384, indicating on the order of 2 X 10° com-
putations at each k-step.

As we show in the next section, the complexity of the
Viterbi algorithm can be dramatically reduced by making a
change of variable and tracking a total phase variable that
is the sum of ¢, and the symbol phase, arg a,. Also, of
course, for PSK symbol sets only one symbol amplitude is
admissible, and admissible symbol phases may be chosen
to fall on one of the discrete phase values. Thus for PSK
symbol sets the complexity is simply m, and the number of
path metric computations is on the order of 300 for m = 48.
Even this figure may be reduced by using one of a variety
of so-called M algorithms in which all surviving phase-
symbol pairs are saved, but only a handful of candidate
originator pairs are considered for each survivor [16]-[18].

V. A PRINCIPLE OF OPTIMALITY FOR PHASE-AMPLITUDE
CODED SYMBOLS AND AN EFFICIENT TWO-STEP
DECODING PROCEDURE

In order to simplify matters and to illustrate the key
ideas, let us consider PSK symbols of the form

a, =e’ (20)

with {8,} drawn independently from an M-ary equiproba-
ble alphabet ® = {(/ — 1)2#/M}™,. Write the measure-
ment model of (2) as

x = €M+, (21)
where the total phase y, is represented as
Y =, + 6,
k
6,=2A0, AO, =6, -0, A9 =6, (22)
=1
It is clear that §, = 2% ,Ad, and ¢, = §, — §,. Thus we

may replace the MAP sequence estimation problem posed
in (15) by the probiem

max - f( {xk)’l(' {\(’k}’x" {Aok)’l()' (23)
(¥ }i (B0 1

The joint density /X £ f(-, -, -) in (23) may be written

K
75 = TN (e, 02)f (% 88,/ ()", (28)7)
(24)

where for k =1, f(,, A6, /-, ) is simply the marginal
density f(y,. Ad,). The conditional density on the right-
hand side of (24) is easily evaluated with Bayes’ rule:

(o 88,7 {9)2 " (0834 7) = 1w (4} (28)))
f( 80,/ ()17 {8)17). (29)

MNow A@, is independent of the previous data, additive
noise and phase fluctuations. Thus

k- -1 1
88/ (w7 (a8} ) =5 (26)
Moreover, if we rewrite y, as
Ve = tw + 0+, — 6,

=y,_y + 46, +w,, (27)
we see immediately that
S/ ()87 (86)) = 29 = uy = 88,).

(28)
Recall y, is defined on the circle C. Therefore, for clarity
we might think of ¢, as a random variable
¥y + 48, + w,, whose density is folded in [—, 7).
Putting (24) (28) together, we have for the joint density f¥

k= kLI'Nx‘(eN‘,O,Z)II‘&('Pk = Y-y — A6,)
A0, £0,, ¢, =0. (29)

Principle of Optimality

Call {§,)¥,{46,)¥ the MAP sequences that maximize
1%, {86,)F enters only in the g,(-) term on the right-hand
side of (29). Now let us suppose (as is usual) that g,(w),
which is even, is also unimodal with a peak at w = 0. This
single-mode assumption for g,(-) is valid in particular
when the phase increment w, in the Markov process (6) has
a Gaussian or Cauchy distribution A(w) (see the Appen-
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Fig. 5. Density functions of phase increment before and after folding.

dix). It follows that fX is maximized by choosing
A, =[¥ = -] (30)

where [x] denotes the closest value of (I — 1)2n/M to x.
By substitution of the constraint (30) into (29) and defining
the “rest” function R(x) on the circle C by

R(x)=x—[x], (31)
we find that one must maximize
X
7%= I N (e, 02) 378(R( ~ i) (32)

The maximization of f* with respect of {,} is formally
equivalent to maximizing the joint density f({x,}¥, {¥x}¥)
when the total phase y, follows a Markov-model similar to

(6):
Ve = Wyt uge (33)

Here the independent increments u, have “probability
density,” folded on the circle C,

1) = 38 (R(w)).

This interpretation is purely formal since f(u) is not
generally a probability density. However, when

(34)

g
D
lul= 3¢

then f(u) is a probability density because in that case

gi{u) =0, (35)

278(R(W)) = gy (u). (36)

Thus (34) can be interpreted as an approximate density
when the peak of g(u) is narrower than the minimum
phase distance between the symbols. This condition is
always satisfied in communications applications; other-
wise, phase distortion is so large that data transmission is
not possible. Thus we have a pure phase-tracking problem
as in [8] and [9], and we may proceed accordingly. Taking

the natural logarithm of /X, we have the maximization
problem .

maxI‘K,
W)F
k= Dot + Pis
= ~ % 2(x — e 2+ ng(R(y,))
Py = 2 2 + ln&[R(% "'k—l)] (37)

which is solved by the dynamic programming algorithm
discussed in Section IV. The complexity ¢’ of this algo-
rithm lies essentially in the evaluation of the m possible
values of | x, — e’¥+ |2 for each new data value x,. The m
different values of In g,[R(-)] will be precomputed and
stored in ROM. For each computation of | x, — e/¥ |2
there are two multiplies, so complexity is simply propor-
tional to m. This represents a reduction in complexity
greater than M for M-ary PSK.

Usually, the phase is differentially modulated rather
than directly modulated, and therefore the relevant symbol
is Ad, itself (see (30)). For the purpose of data transmission
there is no need to reconstruct the absolute data phase
0, = 2} ,46,. This reconstruction has, however, been car-
ned out in the simulations in order to recover the estimates

=y, — §, of the phase fluctuations and to get the
approxunatc variance of the phase estimates

2 1 .

o, X g

= (39)

Density Functions and Geometrical Comments

" The entire development of this section has a nice geo-
metric interpretation which we illustrate in Fig. 5. In Fig.
5(a) the basic phase noise density A(x) is illustrated on

R Jx'ﬁ;ﬁm%h~ #
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(— o, ). Fig. 5(b) is the folded version g,(x) of h(x) to
account for the wrapping on the unit circle C. Fig. 5(c) is
the function g,[ R(x)} that arises in our discussion of the
principle of optimality, sketched in the case of 4-ary phase
modulation. Fig. 5(d) shows g,[ R(x)] wrapped around the
circle C. Since g (x) is very narrow, g,[R(x)] is approxi-
mately the repeated copy of g,(x) at all possible values of
data phase. With x = \pk \pk y» Fig. 5(d) illustrates the
choice of Ad, nearest ¥ = Yios (a4, = m/2 is the best
choice here), and the resulting value of gl[R(¢k \p,( )]
is shown by the heavy segment on the axis \Pk- terminated
by the heavy dot.

We now extend this principle of optimality to phase-
amplitude encoded symbols. Assume the independent,
equally probable data symbols are complex symbols of the
form

a, = A’ (40)

with the 4, positive real numbers drawn independently
from the alphabet 4 = (a,, a,.- - *,a; ). Denote by p(4,)
the probability mass function for the random variable 4, .
Assume the 8, are drawn from the alphabet B =
(By. By.- - -.By,)- Denote the conditional probability mass
function of 8,. given A,, by p(8,/A,). For the (4, 4)
diagram of Fig. 2(d),

4=(y2a,,3q, 32a, S5a,)s

B={b)l. b =(i-D7.
The probabilistic description of the source is
p(A,)=1/4, forall 4,
1/4, 6, = B, By, B Be
8, /A, = =
PO/ A= ) [0, otherwise
p(8,/4, = a;) =p(6, /A, = a,)
1/4, 0, =Bi.By.Bs. B
0. /A, = — & 1+ B3, Ps. Py
P8/ AL = a2) {0, otherwise
p(6, /A4, = a,) =p(6, /A, = ). (41)

In place of the maximization problem posed in (23), we
write

o max ST T (80T (47)
()T A8 (ALY
(“2)

with ¥, and A6, defined as in (22). The density f*(-, -, -, -)
appearing in (42) may be written

K
%= 0 N (A o)

S( e 88, 4,/ ()17 (8)1 7 {4)7). (@3)

The conditional density on the right-hand side of (43) is
simply
f(\“kc Mk' A/ s )

= gV — Vi — 86,)p(80, /A, A )p(A) (44)

an

where p(A8, /A,. A, _,) is the conditional probability mass
function for Af,, given A, and A, _,. Putting (43) and (44)
together, we have as the joint density function to be
maximized
K
c=1
k=1

Nx‘( A,

"nz)gl("’k — V-1~ Aé,)

-p(88, /A4, A\ )p(A). (45)

It is important to note in this expression that the N, (-, )
term is dependent only on the measurement model; g,(-) is
dependent only on the random phase model, and
p(A8, /-, -)p(A,) is dependent only upon the symboling
constellation (or encoding scheme). Thus (45) is a useful
canonical decomposition that is generally applicable to
communications problems involving additive independent
noise and independent increments phase processes.

For the (4, 4) diagram of Fig. 2(d) we may compute
p(A8, /A4, A, _ ) as follows:

p(Aok/Ak =, Ay = “,)

1/4, A6, = B,. Bs. Bs. B1.
i, J even-even or odd-odd

1/4, 46, = B,. By. Bs. Bs.
i, j even-odd or odd-even

(46)

It is a straightforward matter to substitute these results into
(45) and derive a path metric as in (37).

VI. LINEAR PERFORMANCE RESULTS AND THE
SELECTION OF A FIXED LAG

There is one more simplification to be made: namely, the
selection of a depth constant k, such that phase-symbol
pairs may be decoded at a fixed-lag k,, thereby obviating
the need to store long survivor sequences. Call (\P,( K}" the
MAP phase sequence based on measurements {xk}. The
subscript k /K indicates that §, ,x depends on all measure-
ments up to time K. In general the MAP sequence
(¥, K+ gt based on measurements to time (K + 1) may
differ from {y, /x}n at all values of 1 = k < K. However,
one expects_that for large K and for k < K — kg, the
sequences {y, /K}, and (¥, ,x+|}| will not be very different
for a well-chosen depth k. In other words, long survivor
sequences tend to have one common trunk up to K — k,,
at which point they may diverge as illustrated in Fig. 6.
Thus we may use Yr-s ok 85 a final estimate of V- k, Since
Vx- ko/K+1 = SN oK for al positive /. Thusasapracucal
matter, one may choose a depth constant k, such that the
sequence of fixed-lag estimates v, _, ko k=ko + 1, kg +
2,-- -, gives an approximate MAP sequence. Here \Pk ko/k
is simply the phase value, k, samples back, in the MAP
sequence based on measurements up to time k. In this way,
phase values are estimated with delay &, and only survivor
sequences of length &, must be stored.

How should k, be chosen? This is a difficult question to
answer precisely, because no analytical results exist for the
performance of nonlinear phase trackers of the Viterbi-type.
We can, however, study the filtering behavior of a related
linear problem and find how performance varies with
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Fig. 6. Illustration of survivor evolution with common trunk.

fixed-lag k,. To this end, we consider the problem of
tracking phase when there is no data symboling. Assume
{¢,) is a normal random walk of the form (6) with
w1 N, (0,02). Let x, = e/% + n,, {n,} be a sequence of
complex random variables whose real and imaginary parts
are i.id. N, (0, ¢}) random variables. A PLL with gain X,
for estimating (¢, } is the following:

‘pk =4;/¢-| + K, | x; |sin (argxk _‘ﬁk—l)' (47)

Note that this is similar to (13) when there is no data.
For ¢ « 1 we approximate (47) with

Vi =i + Ki(arg x, — 9§, )) (48)
When K| is selected to be
K, = (02/02)[~0.5 + 0.5(1 + 40/02)"*]. (49)

then (48) is the Kalman filter for the “linear observation
model”

agx, =yt ox = exP[j(‘Pk + "k)]- (50)

The steady-state filtering error P, for this linear problem is
related to K, as follows:

Q

2
w PO
2. o (51)

n ow

K, =

Q

A general result due to Hedelin [12] for fixed-lag
smoothing may be adapted to random walk smoothing
from observations of the form (50). The steady-state fixed-
lag smoothing variance P, at delay k, is

ko
Py /ol = Pyfo} = 3 G¥
=1

= Py/02 = GX(1 = G)/ (1 = G7)

G=1-K,. (52)
The infinite-lag smoothing variance is
P, /o) = Py/0) — G*/ (1 = G?). (53)

In Fig. 7 several error expressions and asymptotic forms
are plotted versus o2 /02, which is a kind of SNR. For
large 0.2 /a2, the error variances P, /o2, P,, /02, and P, /o?
go as (02 /a2)~". For small 0} /02, they go as (02 /0})"/?
although infinite-lag smoothing offers 6 dB improvement in
02 /02 over zero-lag smoothing for a fixed smoothing vari-
ance. Over the range of values 0.01 < 0?/02 < 10, a delay
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of ko =10 offers all but 1-2dB of the theoretically
achievable gain from infinite delay. In communication
problems for which random phase is a significant effect,
the ratio 02 /0! is typically in this range. Only at very small
values of 02/62 can very large delays k, provide large
performance gains, but in this case there is no real phase
fluctuation problem for the purpose of data decoding, and
the gain is not worth the large delay. Shown also in Fig. 7
is the Kalman gain K, versus 02 /0.

The problem considered in Section IV is admittedly
different from the linear problem considered here. How-
ever, the numerical results given in Fig. 8 for the Viterbi
phase tracker illustrate that the performance gain to be
achieved with a fixed-lag of k, = 10 is much as predicted
by the linear theory. For the results of Fig. 8, the phase
space was discretized to m = 48 values, data transmission
was 8-ary PSK, and the decoding algorithm was the VA.
The circles, dots, and squares represent experimental phase
estimation error variances, and the heavy solid lines repre-
sent theoretical results. Over the range of values 0.1 <
02/0} <2, the phase estimator variance for the Viterbi
phase tracker operating with delay k, = 10 is essentially
equivalent to the filtering variance of a Kalman filter that
has access to linear observations and provides estimates
without delay. Performance is not measurably degraded by
the presence of data which are concurrently decoded.

VII. SIMULATION RESULTS: GAUSSIAN INCREMENTS

For all simulation results discussed in this section the
phase space [—#, 7) has been discretized to 48 equally
spaced phase values and a Viterbi algorithm has been
programmed to solve the MAP sequence estimation prob-
lem. The principle of optimality established in Section V
has been used to derive the appropriate path metric and
thereby reduce computational complexity. The choice of a
fixed-lag decoding (or depth) constant is k, = 10. Source
symbols have been generated independently. The random
phase sequence has been governed by the independent
increments model of (6) with w, : N(0, 02) and initial phase
uniformly distributed on [—, 7). Initial phase acquisition
has been achieved by transmitting a preamble according to
one of the following schemes.

a) During a pretransmission period of length N, the
sequence of transmitted data is known to the receiver. Thus
in the DBVA and VA systems, based upon MAP estima-
tion, the Viterbi algorithm works as a pure phase estimator
during this period. At the end of the preamble, the Viterbi
algorithm is turned into a joint phase-data MAP estimator.
In the DDPLL and JE systems, based upon decision-
directed algorithms, the algorithm is directed by the true
data during the preamble period.

b) During the preamble period, identical (but unknown)
data are transmitted. This keeps the phase from making
phase jumps associated with symbol changes and makes
the joint phase-data estimator able adequately to acquire
the initial phase.

In our simulations the VA has achieved the same data-
error probability for both methods; i.e., its performance
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Fig. 7. Linecar performance results for evaluating effects of fixed-lag k.
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oulon
Fig. 8. Selected phase tracking variances with and without data trans-
mission.

has not depended upon which learning procedure was
used. On the other hand, Ungerboeck’s DBVA have proved
to be sensitive to the learning procedure. For example, at
SNR = 20dB with phase variance 0} = 4 02 for a learning
period of N =60 data, the number of errors during a
transmission period of 490 data values has jumped from
seven for procedure a)—known data—to 59 for procedure
b)—constant but unknown data. Morcover, the DBVA
typically requires a longer learning period than does the
VA (roughly two times longer). A value of N =50 is
sufficient for the VA, while the DBVA needs N = 100
learning iterations in our simulations. The decision-directed
systems (DDPLL and JE) work as the VA in these respects.
That is, a preamble period of 50 data values is sufficient.
These data may be unknown to the receiver, provided they
are kept constant (procedure b)). No degradation with
respect to procedure a) results.

T4 —

=
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{ Incoherent)

.af PLE )=§ua(-ll¢c.‘ )
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SNR ® 10 log,1/26,*

10 o
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|6 A A i i L
0 -0 -5 5 10 15

[¢]
SNR
Fig. 9. Symbol error probabilities for binary symboling.

Binary Symboling

Shown in Fig. 9 are binary symboling results for the VA
when o2 = 0.01 rad?(o, = 5.7°) and SNR ranges from 4
to 10dB. (Recall SNR = 10log,, 1/262.) The results indi-
cate that performance with the VA is essentially equivalent
to that of a fully coherent receiver, even for a relatively
large value of o,. For comparison, the curves for coherent
binary orthogonal and coherent binary antipodal systems
are also shown. The simulation results for binary orthogo-
nal symboling are interesting because they serve to validate
the simulation. Indeed, as expected, the performance of the
VA is seen in Fig. 9 to li¢ between that of an incoherent
receiver and that of a fully coherent receiver. Of course, the
margin between coherent and incoherent performance is
small at SNR’s of practical interest. The simulation results
for binary antipodal symboling are interesting on their own
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because incoherent reception is not possible with antipodal
symboling.

Eight-PSK

Shown in Fig. 10 are simulation results for eight-PSK
when SNR ranges from 16-19dB and (620?)'/? remains
fixed at 4.4 X 103 rad?. This choice of parameters corre-
sponds to a loop SNR of 23 dB where the PLL is well into
its linear region of operation and little can be gained from
improvements to the phase tracking. The values of o2
under investigation range from 1.6° to 2.2° and the ratio
02 /62 is very small, ranging from 0.03 to 0.12. The solid
circles of Fig. 10 correspond to the VA, and the solid
triangles correspond to the markedly simpler JE. Also
shown in Fig. 10 are performance bounds for fully coher-
ent eight-PSK and 16-PSK symboling. In this case neither
the VA nor the DBVA provides significant improvement
over the JE or DDPLL. The latter two receivers are simpler
than the DBVA which, in turn, is simpler than the VA,
Therefore, for such cases of weak phase noise, neither the
VA nor the DBVA would be favored over the JE or the
DDPLL.

16-QASK

Shown in Fig. 11-13 are simulation results for 16-QASK
symbols encoded according to the (4, 4) CCITT rule. The
decoding procedure are JE, DDPLL, DBVA, and VA, for
three distinct values of the ratio 02 /02, Fig. 11 is con-
cerned with a weak phase noise (02 /0? = 0.25). Fig. 12 is
concerned with an average phase noise (02/02 = 1), and
Fig. 13 is concerned with a large phase noise (62 /02 = 4).
We recall (1] that the DBVA performs some kind of phase
estimation along a path that satisfies

J;n = &n-l + O (54)
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using a Viterbi algorithm. The DBVA that we have simu-
lated is somewhat different from Ungerboeck’s DBVA, in
which the number of possible phase states at each iteration
is limited to six or eight. In our simulation the number of
phase states is not limited, thus avoiding one possible cause
of errors and improving the error rate, but also increasing
the computational complexity with respect to [1).

A

LA

3
s
-y e

FED
Al e

!
|
i
|
¢
;

RV % I By




592 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. S, SEPTEMBER 1981

Behavior of DDPLL and JE on CCITT (4, 4) Constellation

The decision-directed algorithms (DDPLL and JE) have
essentially the same performance, as shown in Figs. 11-13.
The DDPLL is superior to the JE by only 0.5dB. The
slight inferiority of the JE is largely compensated by the
fact that the complex gain of the JE can also correct rapid
gain fluctuations in the channel. We emphasize that the
curves of the DDPLL and JE are biased and cannot be
trusted just as they are because of the occurrences of very
large bursts of errors at relatively high error probabilities.
When such bursts have occurred in the simulation runs,
they have been withdrawn from the error rate computation.
For instance, with 62 = 0.25¢ and SNR = 17dB, at an
error probability on the order of 10 ~2, between one fourth
and one third of the simulation runs (with length 500 data
values) have exhibited bursts of about a hundred errors. In
the simulations, the bursts began to occur at SNR = 18dB,
21.5dB, and 26dB for 02/0? = 0.25, 1, and 4, respec-
tively. This corresponds to a value of o, such that 4o,
ranges between 11.5° and 20°. The phenomenon of error
bursts can be explained as follows: because the phase
increment is Gaussian it will occasionally reach the value
40,. If, at the same time, the noise is relatively large, the
angle between the observed data and the transmitted sym-
bol will exceed the value 22.5° that corresponds to the
angular threshold for an error in the 16-point CCITT
diagram (see Figs. 2(d) and 4(a)). No type of decision-
directed phase estimator can correct such an error. There-
fore, the phase estimate will become incorrect (by a shift of
+45°), causing a group of errors. In turn, due to the
decision-directed nature of the phase estimator, error mul-
tiplication occurs, resulting in an error burst. The impor-
tance of the burst phenomenon in the decision-directed
algorithms can be appreciated from Table 1. The table
gives observed burst frequency in runs of 500 samples,
parameterized by the corresponding observed probability
of an isolated error. The results are given for a DDPLL,
but they are essentially the same for the JE. Moreover, the
results are relatively independent of the ratio 62 /6?2 in the
range 0.25-4. A decision-directed algorithm is not a relia-
ble phase estimator when the error probability reaches the
level of 102, corresponding to severe transmission chan-
nels. With respect to burst phenomena, the DDPLL and JE
behave similarly.

Behavior of DBVA and VA on CCITT (4, 4) Constellation

The performance of the VA is superior to that of the
DBVA. The gain achieved by th: VA over the simpler
DBVA is monotone increasing in the ratio of phase
fluctuation variance o2 to additive noise variance o,2. While
there is no gain when 0l /02 = 0.25, the gain is 1dB for
02/02 =1 and 2dB for 6} /o} = 4. Both systems perform
better than the DDPLL or JE, the improvement again
being a monotone increasing function of 62 /02,

A very important point is that the use of either of the
two MAP phase estimators precludes the occurrence of
error bursts. The errors seem to be grouped in twos or

TABLE1
OBSERVED BURSTS
P
(Isolated
Error) <1074 20%x 1073 1L5x 1072
Percent bursts 0 7 20

threes, and no urror multiplication occurs since the phase
estimator is not decision-directed. Thus such MAP se-
quence estimators can be used even at high error probabili-
ties on the order of 102 or 10",

Comparison Between MAP and Decision-Directed Phase
Estimators

The improvement that can be gained by using any type
of MAP estimator for phase rather than a simple decision-
directed algorithm is again an increasing function of 62 /0.2.
Fig. 11 shows that only 1dB is gained by the DBVA and
the VA over the DDPLL if o2 = 0.25 ¢2. This gain is
realized at a high computational price. For the phase
fluctuations and additive noise of the same importance
(62/02 = 1), the VA outperforms the DDPLL by 3dB
(see Fig. 12), but the gain is reduced to 2 dB for the simpler
DBVA. For large phase fluctuations, the gain is important.
For instance, Fig. 13 shows that the VA outperforms the
DDPLL by 5dB when 62/02 = 4. In addition, the VA
brings the insurance that no burst of errors can occur, even
for very poor SNR and large phase fluctuations. In fact,
the true power gain of the VA over a decision-directed
algorithm is even higher than just claimed if one takes
account of the additional power required in the decision-
directed schemes to ensure against burst as well as random
errors.

Sensitivity to Imperfect Knowledge of 02 /0

It is easily seen in (18) or (37) that the only parameter
required in order to proceed with the VA algorithm is the
ratio of phase variance to additive noise power. The same
holds for the DDPLL whose optimal gain X, depends on
this ratio (see (49)), and for the JE whose step-size p (see
(14)) is to be kept close to K, but smaller, provided the
data diagram has unit power. As for the DBVA, it requires
only the knowledge of 02 in order to determine the number
m of discretized phase levels. Thus an important feature of
each system is its sensitivity to an imperfect knowledge of
02/0} (or o?) because, first, 6} can vary with time and,
second, the actual phase can fluctuate according to a
statistical model that is different from the one expected.
The less sensitive the system is to the knowledge of 62 /0
(or 02), the more robust it is.

a) Sensitivity of the Decision-Directed Systems: Let us
denote 02/0? by a. The function K,(a) that gives the
optimum loop-gain of the DDPLL is sketched in Fig. 14. It
is quite flat except for a very close to zero (e.g., a < 0.2).

Now the case a <« 1 is of no real interest for the purpose
of this paper. Indeed, it has been seen previously that, in
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Fig. 14. Optimum gain-loop of DDPLL.

this case, no MAP phase estimator is worth being worked
out. Moreover, any reasonable phase estimator will per-
form satisfactorily. When a is not negligible, K ,(a) is
slowly varying. For example, K,(1)/K,(0.25) = 1.59, and
K(49)/K (1) = 1.34, Thus the value K(1) = 0.62 for the
DDPLL gain is correct for a large range of values of a.
This fact is largely confirmed by the simulations. Hence,
due to the risk of error multiplication that increases very
rapidly with K, it should rather be set to the lower bound
K (ag,) corresponding to ihe smallest a that can be
expected, rather than to an average value K (a,,.). which
will sometimes be too large and bring error bursts. Thanks
to this precaution, the DDPLL is insensitive to a. It is a
robust system.

The robustness of the JE is also excellent. This fact was
checked on numerous computer simulations: as a function
of the step size p, the error probability P(E; p) exhibits a
minimum which is very flat, as sketched in Fig. 15. The
range where the minimum is reached does not depend
critically upon a. A value such as p = 0.4 corresponds to
the minimum of error probability for a in the range
10.25- 1] and for a unit energy data diagram.

b) Sensitivity of the MAP Phase Estimators: The VA
sensitivity to imperfect knowledge of a has been tested in
our computer simulations. It appears that the VA perfor-
mance is not appreciably degraded by an error of +*6dB
for a. Hence the VA robustness is at least as good as that
of the decision-directed algorithms.

On the other hand, the DBVA robustness has turned out
to be poor. For instance, with SNR = 21dB and a = 4,
the DBVA is supposed to work with m = 27 /0, = 50
phase levels. If only 45 levels are used, corresponding to a
0.9 dB error for a, then the error probability is increased by
a factor of two. In fact, as a function of m, P(E; m)
exhibits a minimum, but it is a sharp minimum. This poor
robustness can be understood by noting that in the DBVA,
the path metric is not a function of a = 62 /0.2, but only of
2. This may be one of the main drawbacks of the DBVA.

VIII. SIMULATION RESULTS: BOUNDED-INCREMENTS
PHASE JITTER

For all simulation results of this section the phase space
(—, #) has been discretized to 32 equally spaced phase
values, and a VA has been programmed to solve (17). The

"
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Fig. 15. Sensitivity of JE to choice of step size p.

assumed increment density A(w) is the uniform density
h(w)=[7l¢;’ —a<w<a; 2a=2n/16 (55)
Q, otherwise.

The corresponding discrete transition density for use in the
path metric is
_ |3 ¢ — - = —7/16,0,7/16
f8e/#1) { 0, otherwise.
(56)

The resulting VA is related to the class of so-called M
algorithms [16]-[18] in which all survivors are saved, but
only M (in this case 3) candidate originator states are

“allowed. This significantly reduces calculations and results

in an algorithm similar in spirit to the DBVA of [1]. Still,
however, phase is tracked oily on [—#, #) rather than on
{ — o0, 00).

Source symbols have been generated independently from
a four-PSK alphabet and used to differentially encode
phase according to a Gray code. The random phase se-
quence has been generated in ways to be discussed below.

Markov Phase with Non-Gaussian Increments

Here the phase is generated according to (6) with A(w)
given by (55). Thus the algorithm is matched to the actual
phase sequence. Shown in Fig. 16 are performance results
for the VA and for the JE. The VA outperforms the JE by
1.5dB over the range 10dB < SNR < 15dB. The proba-
bility of error is “probability of bit error.”

Sinusoidal Phase Jitter

Here the phase jitter is sinusoidal (see (4)) with uni-
formly distributed initial phase and frequency ». The
frequency is chosen such that »A = 1/24, corresponding to
a transmission rate of 4800 bits/s with baud rate 1/A =
2400 Hz and jitter frequency » = 100 Hz. The runs are
2000- 10,000 steps long, corresponding to 4000-20,000
transmitted bits. The peak-to-peak phase deviation is 20°
or 60°. For these experiments the VA outperforms the JE
by 1.5-1.7dB. This gain is, of course, achieved at a high
price in complexity.




Fig. 16 Symbol error probabilities for 4-PSK and non-Gaussian phase
increments.

Comparison of the JE and VA

In the simulations reported above, the ratio a = 02 /0?2
ranges from 0.02 to 0.81, that is from small to average
1 values. No burst of errors has ever been observed for the
JE. This is due to the fact that the phase increment is
always bounded as appears in (4) and also (55). The bound
is much smaller than the angular distance between adjacent
data. Thus there is no risk of a =90° slip (corresponding
to the four-PSK diagram) in the JE phase estimation.
Hence the errors will be scattered rather than grouped, and
no error multiplication phenomenon can happen.

Owing to this consideration, to the fact that the VA
outperforms the JE by only 1.5dB, and to the complexity
of the VA, a practical system will implement the JE (or
DDPLL) rather than the VA (or DBVA), in the case of
bounded increment phase jitter.

IX. CoNcCLUSION

We have derived a principle of optimality for phase-
amplitude encoded symboling that allows one to simulta-
neously track random phase and decode data symbols
using the VA derived in [8] and [9). The VA is designed for
a random walk phase process, a very severe type of phase
process. In such a process there exists the possibility of
large phase jumps. The VA gives excellent performance
because it benefits from the use of a lag to observe future
data samples which make large phase jumps look unlikely.

In order to reach conclusions about the type of phase
estimation that should be used for given types of phase
fluctuations, performance comparison of the VA with two
simple decisior -directed (zero-lag) phase estimators,
namely, the JE of [3] and the DDPLL of (5], and with the
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puter simulations, with various data diagrams. They indi-
cate that the choice among the four systems is to be made
according to four parameters:

1) the error probability P(E) at which the system is to
be used:

2) the relative importance a = 62 /62 of phase fluctua-
tions with respect to additive noise;

3) the complexity ¢ that is technologically feasible and
acceptable;

4) the maximum phase increment A®,,, that is to be
expected, as compared to the angular distance be-
tween points of the data diagram.

Suggestions for this choice are sketched in Tables II and
111 where Table III is concerned with cases 2 and 3 of
Table I1.

The choice between the two decision-directed phase
estimators, JE or DDPLL, is irrelevent for the matters
discussed in this paper. It appears in Tables II and III that
the VA and DBVA are preferred when a, P(E), and D,
are large. The comparison between these two MAP phase
estimators shows that the VA is more robust, has a smaller
learning period, and outperforms the DBVA by 2dB or
more when a is at least equal to four.

Only Viterbi, or Viterbi-like, algorithms can survive and
correct error bursts by effectively using the weight of future
evidence to render such bursts too unlikely to occur. Thus
it seems likely that the VA (really dynamic programming)
will grow in importance in such applications as spread
spectrum communication where the phase of a wide-band
carrier can be tracked for symbol decoding.
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APPENDIX
MONOTONICITY OF FOLDED NORMAL AND CAUCHY
DENSITIES

There are many choices for the phase increment density A(x)
that are physically interesting and mathematically tractable. Two
of particular interest are the normal density and the Cauchy, the
latter being useful in the modelling of “heavy-tailed” behavior.
When folded around the unit circle according to (8) these densi-
ties yield transition densities which achieve their maximum at
& — ¢, = 0 and decrease monotonically on the interval 0 <
¢ b1 ST

Consider first the Cauchy case

nx)= 3 — 4

. 57
ke @2 + (x + k29)? 57

According to Poisson’s summation formula [13], this may be
written

1§ ki sk
= —a skx
8I(x) 2" k_z € €
=—0o
= %(1 — e 2)(1 - 2e %cos x + e29) . (8)
This function achieves its maximum value at zero and decreases

monotonically.
In the normal case

a(x) = § (21702)"/2exp {— (x+ an)z/Zaz}.

k=—o00
(59
Again, by Poisson’s summation formula,
b -1
gi(x)= 3 m) exp (jkx —k%?2).  (60)

=-00
This infinite sum goes by the name Jy(x, ¢ = e~ °/2) in the
theory of Jacobian elliptic functions and theta functions [15]. The
theta function Jy(x, ¢) is known to be monotonically decreasing
on the interval 0 < x < o,
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Aspects of Dynamic Programming in
Signal and Image Processing

LOUIS L. SCHARF, SENIOR MEMBER, IEEE, AND HOWARD ELLIOTT, MEMBER, 1EEE

Abstract— The techniques peculiar to dynamic programming have found
a variety of successful applications in the theory and practice of modern
contral, Successes in the theory and practice of signal and image process-
ing are less numerous and prominent, but they do exist. In this paper, we
sound a call for renewed attention to the potential of dynamic programming
for solving knotty nonlinear fiitering problems in signal and image process-
ing, and outline successes we have recently enjoyed in nonlinear frequency
tracking and random boundary estimation in noisy black and white images.
Two classical results, the fast Fourier transform and Levinson’s recursion
for determining autoregressive parameters, are treated in the context of
dynamic programming simply to reinforce the point that many of the
algorithms we take for granted, and which were derived without recourse to
dynamic programming, can be nicely interpreted as dynamic programming
algorithms.

I. INTRODUCTION

N THIS PAPER it is our aim to show that dynamic

programming, a fundamental technique in control theory
since Bellman’s introduction and advocacy of it in the
mid-1950’s, can be of considerably more value in signal
and image processing than has generally been recognized.
This is not to say others have failed to recognize the
potential of dynamic programming for solving interesting
signal processing problems. We mention in particular Cox’s
early work {1}, [2] on Kalman filtering and dynamic pro-
gramming for the estimation of state variables and the
identification of system parameters; Viterbi's dynamic pro-
gramming algorithm for decoding convolutional code se-
quences [3}. Cahn’s dynamic programming algorithm for
FM demodulation [4]; and Forney’s discussion of inference
problems on finite-state Markov sequences that can be
solved with the techniques of dynamic programming [5].

In the sections to follow we rederive classical algorithms
in discrete Fourier analysis and linear prediction using the
principle of dynamic programming. We then present two
new dynamic programming algorithms. One is for nonlin-
ear frequency tracking and the other is for edge detection
in noisy black and white images.

The organization is as follows. In Section 11, we present
an elementary dynamic programming formalism. In Sec-

Manuscript received April 13, 1981, This work was M;s)goncd in gm
by the Army Research Office, Research Tn"an%c Park, NC, under Con-
tract DAA(329-79-C-0176 and by the Office of Naval Research, Statistics
and Probability Branch, Arlington, VA under Contract N00014-75-C-0518.
A preliminary version of this work was presented in an invited session on
Signal Processing and Control Interactions at the Thirteenth Annual
Asilomar Conference on Circuits, Systems and Computers, Asilomar, CA,
November 5-7, 1979.

The authors are with the Deramnem of Electrical Enginecring, Col-
orado State University, Fort Collins, CO 80523.

tion 111 we use dynamic programming arguments to rede-
rive the Goertzel and decimation-in-frequency fast Fourier
transform (FFT) algorithms for efficiently computing the
discrete Fourier transform (DFT). In Section IV, we dis-
cuss the connections between control, detection, estima-
tion, and prediction of autoregressive sequences observed
in additive noise. We highlight the central role played by
the so-called normal equations and rederive the Levinson
algorithm for recursively solving them in the order of p?
operations. The derivation is a dynamic programming one.

The new results follow in Sections V and V1. In Section
V, a dynamic programming algorithm for tracking the
frequency of a frequency modulated sequence in additive
noise is derived. Several simulations illustrate the perfor-
mance of the algorithm. This provides a solution to a
classical nonlinear filtering problem. The results of Section
VI show how dynamic programming may be used to derive
a new algorithm for estimating local segments of object
boundaries in noisy black-and-white images. Some exam-
ples are given to illustrate the use of the algorithm in
estimating complete object boundaries as well.

II. A DYNAMIC PROGRAMMING FORMALISM

Traditionally, dynamic programming has been used to
find “optimu'n” solutions to multistage decision problems
(6], [7]. An “optimum” solution has generally been one that
maximizes or minimizes a performance or cost functional.
When the multi-stage decision problem is cast in a prob-
abilistic framework and the criterion of optimality is maxi-
mum a posteriori (MAP) probability, then the cost func-
tional is typically a multivariable likelihood function or
some monotone function of it.

The following is a formalism that is rich enough to
embrace most of the “signal-in-noise” problems encoun-
tered in signal and image processing. Let {x,}2 , denote a
process with state variable representation

X1 =hil X u,)
ne=g(x:). ) (1)

Here f, and g, may be random functions; the sequence
{u, ) is a parameter, decision, or control sequence that may
be functionally dependent on the measurement sequence
{»:)- The range spaces for the state x,, the parameter u,,
and the measurement y, are X, U, Y, respectively. These
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Fig. 1. States and characters.

spaces may be finite, countable, or noncountable. When
the spaces X and U are countable then their respective
elements may be placed in one-to-one correspondence with
the integers and the formalism of Markov chain theory
may be mined. Even though the states of X may be chosen
abstractly and appear uninteresting, the mapping g, may
be chosen so that the signal component of g,(-) generates
characters or observations C, that are of great interest. The
idea is simply to let a Markov chain, say on the integers
0,1,2,- - -, control the dynamical state of the problem and
reserve the role of character or observation generation for
the observation mechanism g,(-). This point is illustrated
in Fig. 1 where the generated characters can be almost
anything: contours, sequences, images, etc.
Consider a finite version of the process {x, )2 :

XN'_‘(X().X,."',XN)

=Fy(Xy-),Uy-y)
Uy =(uo." - - uy)
Y=oy oyw)- (2)
Typically, one wants to maximize a performance criterion
Ly( Xy Uy, Yy) (3)

with respect to Uy, subject to constraints Cy( XU, )=0.
Call I§( Xy. Uy, Yy) the maximum. When /} obeys a recur-
sion of the form

IN(Xy UYL Yy ) =15 (X UYL YY)
+P~(X~.uﬁ. )’N) (4)

then dynamic programming comes to the fore and the
solution U’ may be generated recursively as the limit of
the following sequence of solutions:

ur=s(ur'.r"), a=12---,N. (5)

The functional S, describes the recursion for computing
U;. Thus the central theme is to imbed the solution to an
N stage problem in a sequence of simpler n stage problems.
When the underlying state and parameter spaces are finite,
the solution algorithm is finite-dimensional and imple-

mentable on a digital computer. When they are uncounta-
ble, but the function / is quadratic, then it is still often
possible to find a closed-form recursive solution that may
be programmed.

A very large class of problems may be formulated as
before. Two particularly noteworthy examples are the lin-
ear discrete-time quadratic regulator problem in determin-
istic and stochastic control, and Markov chain sequence
estimation in additive noise. On the other hand, there are a
great number of problems that admit dynamic program-
ming solutions, but which are not naturally formulated in
the style above.

One of the points we wish to make is the following:
recognizing that a solution is a limit of a sequence of
approximants which may be recursively computed is per-
haps more fundamental than the search for a correspond-
ing optimization problem. The chief value of an optimiza-
tion formulation is that it often simplifies the search for the
recursive solution algorithm.

III. DynNaMIC PROGRAMMING, THE DFT, AND THE
FFT

The DFT certainly constitutes one of the cornerstones of
modern Fourier analysis. Its uses range over the entire
spectrum (so to speak) of signal processing applications.
The DFT is a mapping, DFT: {x,}¥ '~ {X,}y ', that
takes the sequence {x,}) ! into the sequence {X,}3 '
according to the rule

N—1
X,= 2 x,Wrm,  m=0.1,-- N-I
k=0
Wy =exp(—j2n/N). (6)

Noting that Wy ™V =1, ¥m, we may write X,, as follows:

N-1
X,= 3 x,WymN-m, (7

m
n=0
This calculation may be viewed as the limit of the follow-
ing sequence of imbedded approximations:

k=1
S

n=0

Note X =obeys the following recursion:

X+ = Wy =X + Wy ™x,

X=X,
XD =x Wy ™. 9

So X, is obtained as the limit of a sequence of approxima-
tions that begins at X\ =x,W, ™ and terminates at X\’
=X,. This is the so-called Goertzel algorithm (8] for
obtaining the mth DFT variable X, as the output of a
digital iilter excited by the sequence (x,})'. The output
of the filter is read at time k=N (set Fig. 2).

1019
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Fig. 2. Goertzel filter for DFT component X,,,.

Dynamic Programming and the Decimation-in-Frequency
FFT

The Goertzel algorithm is a nice dynamic programming-
like solution for the DFT. However, it is not efficient.
Computational complexity is of order N2, Let us see if we
can improve upon it. Consider X!*) for vien frequency
indices m=2r:

k-1
(k) — ‘2rik—n)
XZr - 2 xnu/N .
n-0
k-1
_ rth~n)
- 2 on&'/-'Z .

n 0
For k even (say k=2s),

RET |
- Ve —

S g
n -0
[ | 25—1

- 2s—n) . 25—
2 x, Wy 5 + 3w
n 0 n .

s 1 s—1
- rs ris—n) ~r(s-)
= W.\-,z 2 onN/Z + 2 X4:Wn 2

n 0 1=0

o
Xy

=W X+ (1)

This shows that the two s-point DFT approximant X§2°
may be obtained from two s-point approximants. By
choosing s=N /2 and continuing backwards in this way
(for odd subindices, as well) one arrives at a backward
dynamic programming derivation of the decimation-in-
frequency FFT See Fig. 3 for an elementary representation
of a four-point decimation in frequency FFT. The decima-
tion-in-frequency algorithm improves on the Goertzel algo-
rithm by requiring complexity on order Nlog N.

1V. DETECTION, ESTIMATION, AND CONTROL IN THE
AR(N ) Case: KALMAN FILTERS, LEVINSON
RECURSIONS, AND DYNAMIC PROGRAMMING

Autoregressive (AR) models for signals, states, and data
play a starring role in many areas of signal processing and
control. By appropriately selecting model parameters (and
order) one can model the covariance structure and spectral
characteristics of more general models. The so-called nor-
mal equations for identifying AR parameters are elegant
and easily solved with recursions of the Levinson type.

In this section we tie up control, prediction, detection,
and estimation in the special case where we are dealing
with a zero-mean wide-sense stationary, scalar autoregres-

x(l) )
2 PT. ) x

- 4)
1T —w Xe
T

'y,
T /. \Ax“'

- |
—~{OFT [—£ -~ X"
Y

Fig. 3. Four-point decimation-in-frequency FFT.

sive time series. The usual state-variable and matrix block
diagrams give way to scalar variables and digital filter
blocks of moving average filters. The normal equations are
highlighted and dynamic programming is used to derive
the famous Levinson recursions.

A. Models

Let {x,} denote a scalar zero-mean wide-sense sta-
tionary AR sequence of order p (denoted AR(p)) that
obeys the recursion

P
X = D X, tw,,  Vk.

n=1

w,: sequence of 'i.i.d. N(0,02) random variables (r.v.s.).'

(12)
It is easy to see that the covariance sequence {7},
I =r_,. associated with the sequence {x,} obeys the
recursion
p
= > a,r,_,+o28

m wim?*

m=0,1,---. (13)

n=1\

From here one may write out the so-called normal equa-
tions:

R,a,=r,
rnoon [
noon T2
Rp = .
rp——l )

r=(r. ). (14)

We note at this juncture that turning r, upside down
turns the solution to the normal equations upside down. To
see this, let

00 -~ 0 1
0 )
=l ow=r (19)
0

denote the exchange matrix and note by the Toeplitz
symmetry of R, we have JR,J=R,. Thus

'Here and elsewhere iid. stands for independent, identically dis-
tributed and r.v. stands for random variable.

o At ————. s
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JR,Ja, =r,
R,Ja,=Jr, (16)

As J turns vectors upside down, this proves the claim.

B. The Normal Equations are Fundamental

The AR coefficients a;,=(a,.- 1,a,) that characterize
the sequence {x,} are fundamental to the implementation
of control, prediction, and detection algorithms on noisily
observed AR sequences. Unfortunately, sequences rarely
come tagged with their corresponding AR parameters.
More typically finite records of them come to use and we
estimate a covariance function (or power spectrum), often
by FFT-ing, squaring and windowing, and inverse FFT-ing.
These estimates may then be used to solve for the coeffi-
cients a, from the normal equations. This makes the nor-
mal equations fundamental and arouses our interest in
efficient ways of solving them. The derivation that follows
is an adaptation of Bellman’s discussion of quadratic forms
and dynamic programming in [9].

C. Dynamic Programming and Levinson's Algorithm
Consider the quadratic form
0,(r,)=r,~2a,r, (17)

This quadratic form is minimized for some choice of a,
that we denote af. It is easy to see that

a’=a, (18)

+apRpa,,

where a, comes from the normal equation:

a,=R,'r, (19)

The corresponding minimum of Q,(r,) we denote Qh(r,):
03(r)=r~az,

=r—nR,'r, (20)

The quadratic form Q,(-) may be written recursively as

Q,(r,)=apry—2a,r,+Q, \(r,.,—a,Jr, ). (21)
So minimization of Q,(r,) with respect to a, may be
written

Q)(r)= n:i'nQ,,(rp)
= min [a:ro —2a,r,+minQ, (r, ,—a,Jr )]
a, a,

D).

(22)

Jr

= mi 2, _ p-1 —
nll.m[apro 2a,r, + QL (r, \—a,Jr,
14

This equation contains the essence of dynamic programming
and the principle of optimality: once the solution a : .and
corresponding minimum Q2. |, have been found for the
order (p— l) problem. af may be found as a function of r,,

7, and af” ). At each step of the way the minimization on
a is quadranc

PRI ATy SRR

1021

Use (20) in (22) to get a different recursion for Q/(r,):

Q)(r,)= mm[a ro=2a,r, +ro~(r,_,—a,Jr, )
‘R, I(’} 1 “p-"}: |)]
= mm[a (ro—r, o JR,Jr, )
~2a,(r,~r_ R, I, 4027 {(r, )]

—_ 2 P
—n;m [ap(ro ap_, rp*,)
p

—2a ( —af” '.lr )+Q;’f,‘(r,,,,,)]. (23)
It follows easily that the minimizing value of a,, is
r,—a’” Jr,_
af = P — ”p - P (24)
rh-allir,
Equivalently,
2 oy )
(a,’,’) (’o —af|r, ,,)=a,’,’(rp —a,’,’dl'.lrp,l). (25)

Substituting the solution of (24) into (23) we get the
following recursion for Q/(r,):

Qr(r)=0r Nr, \)—af(r,—
=07 l(n, )~ (af) (r—af i, ). (26)

Comparing this with (20), we have

a? L
pvl‘lrp- |

alr,=al’|r,_ ,+a;f’(r,,~a",’; ,';Irp,,) (27)
from whence, it follows that
af =(az ' —aZa? |J.a?). (28)

This is the recursion for updating a}.
This completes the Levinson recursions. summarized as
follows:

_r,—ab U,
() o=
i) af'=(az"! ~afa} ls.ap)
i) Q2(r,)=0Q8 (5, )= (af)(ro—af 7, ).

(29)

There are no matrix inverses here—only vector inner prod-
ucts. Thus the algorithm is O(p?). Of course. a is the
desired solution a,,.

To show the importance of the AR coefficients a,,
we consider the following family of problems:

(1) noisy prudiction

(i1) noise-free prediction

(iii) minimum variance contro}

(iv) detection.

—al
a,,.

D. Noisy Prediction and the Kalman Predictor

Assume the sequence {x,} is observed in zero-mean
additive white Gaussian noise (WGN):
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/CIoso for Control

-1,
X _(!), pute . 2" : Delay
R Xy

297"

Fig. 4. Prediction, detection, and control of a noisy AR( N ) sequence.

2, =X, 0y, vk

n,: sequence of 1.i.d. N (0, 0?2 ) random variables. (30)

The companion form state model is

X 1 =AX +bw,

Z,=c'X,
(Xk—erl
x.=| :
Xg—1
[ X
K
1
A= 0
Lap a,_, a,
0
b=c=|:|. (31)
0

The stationary Kalman one-step predictor for the noisily
observed AR( p) sequence is

X, =AX, +K(z,—%,)

X, =c’fk (32)
where K is a ( pX 1) Kalman gain:
K=APc(c’Pc+o,,2)_‘
=[ky ko ky ] (33)

P=(A—Kc')P(A—Kc') +02KK'+o2bb'.

The Kalman prediction sequence (£,.,} for {z,,,} can
be interpreted as the output of an AR moving average
(ARMA) filter with p poles and p—1 zeros (denoted
ARMA( p, p— 1)), driven by the prediction error sequence
{v. =2, —x,} or an ARMA(p, p—1) filter driven by the

S AR

observation sequence {z,}. The resulting filter equations
are

P P
aXe it 2 EiVk+1-i (34)
i=1 [

i= i=

X =
or
P P
X1 = 2 (a,—8)%u1-i+ 2 8iZk+1-i (35)
i=1 i=1

where the coefficients g, can be defined by the characteris-
tic polynomial A(A) of (A4 —Kc¢'):
?
AN)=A7+ 2 (gi—a,)AP"".
i=1

i=

(36)

See Fig. 4 for a block diagram of this predictor. Note that
the noise-free moving average (MA) predictor filter, P(z)
=3P_,a,z 7", is preserved in the feedback loop, but that
the residual sequence v, =z, —X, is now weighted with a
feedforward MA filter, Q(z)=2%_,g,z "

Why is the noisy Kalman predictor ARMA and not
MA? The answer is that {z,}, a noisy version of an AR
signal process, obeys an ARMA( p, p) difference equation.
As an AR( p) model has an MA( p— 1) predictor, it is at
least logical (if not intuitive) that an ARMAC( p, p) process
has an ARMA( p, p— 1) predictor.

E. The Noise-Free Predictor

The prediction vector X, consists of the terms
E[xk—-p+l/zk—l’zk~2"“]
' (37)
Elx,_1/2k 102423, +)
E[xe/zk-y0 2521000 )
When o? =0, then z, = x,, ¥k and
E[xk—n/zk—n'zk-n—l'"']=E[xk—n/xk—n9”']lev'n‘
n=12---. (38)
So in this case the prediction vector is

P '*"é‘é—’('%‘fi.;s:w e

it et s i
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xk—p+l
Xk-p+2

X, = . (39)
Xg—1

Xx/k—1

It follows that P, the covariance E[ X, — X, ][ X, ~X,] is

0 0

P=]|: :. 40
. )
0 0 o2

Calculating K by substituting (40) into (33), we find thas
A(M)=X" and hence g, =a,. This implies, as one would
expect, that the prediction filter of (35) reduces to the
purely MA relation:

?
Reer= 2“:2k+|~.- (41)
i=1

F. Minimum Variance Control

One of the simplest control strategies is minimum vari-
ance regulation where one desires to minimize the variance
of the AR( p) output sequence {x,}. and force E(x,)=0.
The well known separation principle allows one to generate
a feedback control strategy assuming noise free measure-
ments, i.e., n, =0, and then use the same strategy in the
noisy case but with the Kalman filter estimates {¢,} re-
placing the actual filter outputs {x,}.

Assume then we have the system

P
Xy = 2 a; %, twto, (42)

i=]

where {v,} is our feedback control sequence. We would
like to minimize

E(x})=E (é x,‘ﬁ,+wk+v,()2

+(vk+ Yax,. ,)2)

= ( )+ZE(E(wk0k/Uk)vk)

+2£( S am))

r 2
o+ Y a,x,‘__,) ) (43)

i=1

+E

Since (w,} is uncorrelated with {x,_,), i>1, and since

g A T e

E(w,v,|v,)=0, it is clear that E(x}) is minimized by
choosing

14
- 2“:-‘&4:- (44)
=1

This control is illustrated in Fig. 4 as a feedback loop
running up the left side of the figure. The feedback loop to
the top “compute™ box shows how £, would be used for
minimum variance control in the noisy case.

G. Det ction and the Likelihood Ratio

Consider the hypothesis test H,, versus H, with
Hy z,=n,, k=0,1,---.K
H:z,=x,+n,, k=0.1..--,K (45)

and the data assumed stationary over the interval. This test
is equivalent to the test H, versus H,, where

Hy: v®=z,: N(0,02)
H,:»{": N0, py+02): p,: variance of £,
(46)

and v{" =z, —x, is the innovations sequence in the Kal-
man filter. The log-likelihood ratio for this problem is
proportional to

K
2. @

k=0

LR=K—-

1 K
2
2 2 ”k+
% k=0

R~

Py

Thus the statistics Zv} and Tz} are sufficient and the
log-likelihood ratio may be computed as in Fig, 4.

V. FREQUENCY TRACKING AND DYNAMIC
PROGRAMMING

Phase and frequency tracking problems comprise some
of the most nettlesome nonlinear filtering problems in the
entire realm of signal processing. Nonlinear filtering and
MAP solutions have been reported recently by Bucy and
Mallinckrodt [11], Ungerboeck [12), Tufts [13), Scharf er al.
[14], [15]. and Wolcin [16]. A typical problem is the follow-
ing: observe the signal-plus-noise sequence {z,} with

2, =5+, ny: sequence of i.i.d. N(0,07)
random variables.
5= e/® (48)
and estimate the phase sequence {¢,} or some underlying

function of it. Here the character assigned to state ¢, is

5, =exp(joy )
In all that follows it will be convenient to organize the
observed data into contiguous data blocks:

0
4

Z=\ Z,~5, +n,
k-1

PN

O e
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2n(Q-1/Q

-k
s et ve k

Fig. 5. Visualizing the random walk frequency trajectories.

SN ny
s, = n=|: (49)

S+ N -1 RN -

Think of the (NKX1) vector Z as a concatenation of K
data blocks of the form z,, each of dimension N.

The choice of a model for ¢, determines whether we are
talking about phase or frequency tracking, although the
distinction between the two is more imagined than real. In
[14] the phase was assumed to evolve according to a
random walk phase model

S =0 1 W

w, : sequence of i.i.d. N(0.0?2) random variables (50)

and a complete dynamic programming solution was pre-
sented. In [15] a discontinuous-phase FM model was as-
sumed and a dynamic program algorithm derived.

Here we assume ¢, evolves according to the continuous-
phase FM rule

G = Ty (s1)
where?
2n
Wy = 0 7 YikrNg
= -2—sz,. IN<k<(1+1)N. (52)

In this way w, is fixed at the value (27 /Q)¥, for a block of
N as illustrated in Fig. 5. Correspondingly. ¢, increases at
a fixed linear rate for N samples and then adopts a new

2[ -] denotes integer part of (-).

linear rate for the next N samples. Therefore, we may write
s, as follows:

s, =exp (jo,n )d(v,)

o5
d(s)=| : . (53)

exp(j%(N—l)v,)

The phase ¢, is the total accumulated phase after tN steps.
It depends on the entire history of frequency terms
, and obeys the recursion

27
O =P - I)N+NQ

L% TRERN A%

Between (N and (t+1)N —1 the phase grows linearly as

. 2
¢ = +(i=1N) T,

=oun+ (= [1IN) o,

This additional phase increase is accounted for in the

. vector d(»,). See Fig. 5 for an illustration.

To complete the model we assume {»,} is a sequence of
discrete random variables that take values in the set
{0,1,---.Q—1} and evolve according to the rule

l't:"r—le“r (54)

where u, €{0,1,- - -.Q0— 1} and addition is modulo-Q. The
distribution of the sequence of i.i.d. random variables is
selected in such a way that the transition probability

(v, /v_)) (55)

corresponds to our notion of physical reality. We may
think of the resulting frequency sequence {w,} as a finite-
state random walk on the circle with an unusual transition
probability structure. Typical trajectories for {w,} and
{s,) are illustrated in Fig. 5.

The joint likelihood function for Z and {»,} is propor-
tional to

K-—-1

1
=0 20712

=

K-\
esit+ S mp(-) (56)
=0 ¥

Using our representation for s, and dropping terms inde-
pendent of », we obtain

'3 Re(erp(~san i)+ £ mp (32 )

on t=0
(57

The term z,d*(w,) is nothing more than the DFT of ¢z,
evaluated at the DFT frequency (27/Q)»,. The best way to
compute it is to zero-pad z, to obtain a Q point sequence
that may be FFT’ed. See Fig. 6.

Our notion of the most likely sequence {»,)5 "

is the

porm

P ArPTR

[ — D YT e o
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{frequency state)

.o EETIN 3 ) N -— (@]

(xepu) ow})

Xoy Xyy ooy %y yy 0,0,..., 0
Xy ooy %0 0,0,..., 0

Ln“ v 2 Xy 0,0,...,0

o

-

FFT

Xonr <o 1 Regopmen 900, 5., O

Fig. 6. Data processing and frequency trellis illustrating evolution of surviving frequency tracks.

sequence that maximizes /. This is the MAP sequence.
Write the maximization problem as

max [p_, (58)
('I)OK !
with
l . 1 %
r=r_,+ ;‘:Re{ew(—m,v)z.d‘(":)}““”(7'—. )
n "~
(59)

So our maximization problem becomes

Ve _
max | max [,_,+Inp —"—')
EY-201 R U A Yk-2

+

l . ’
202 Reexp(—jdx- 1w )z(x— nd* (¥ k- |))]- (60)

Thus for each node on Fig. 6 we evaluate the FFT z,d*(»,),
phase it by exp(—/¢,»). and find the best route through
the trellis with the dynamic programming algorithm of
(61). This completes our algorithm for moderating the
usual peak-picking rule on the FFT with prior information
p(»,/v,_,). The reader is referred to [14] for a more com-
plete discussion of a related algorithm for nonlinear phase
tracking,

Shown in Figs. 7 and 8 are simulations of the algorithm
running on noisy phase-coherent FM data. The parameters
are

u,: folded normal r.v. of [14]

. 2 \_(0.01, Fig. 7 _
variance ‘ ) “’)—{0.1, Fig. 8° Q=32
CNR=IOlog,ol2= -3dB

oll
(61)

where CNR is the carrier-t0-noise ratio.
The algorithm is run in a fixed lag mode [14] for a lag of
60. The results show that even when FFT peaks, indicated

with 1 (peak), 2 (secondary peak), and 3 (tertiary peak) are
unreliable the estimated frequency sequence (thin line)
tracks the true frequency sequence (thick line).

This formulation improves on a heuristic idea of Rock-
more, who was perhaps the first to advocate dynamic
programming search for likely frequency tracks [17).

VI. LocAL BOUNDARY ESTIMATION IN Noisy
BLACK AND WHITE IMAGES

In digital image processing one is interested in develop-
ing computer algorithms which can either automatically
extract information from pictures or at least simplify the
process of manually interpreting them. In either case, a
basic step involves segmenting a picture into regions with
similar features such as gray level or texture. This involves
the estimation of region boundaries. Boundary estimation
algorithms make use of operators which estimate short
segments of boundaries using picture data in small picture
sections. Examples are simple gradient operators and the
well-known Hueckel operator [18]. An example of a local
sequential estimator which is also used for this purpose can
be found in [19]. In this section we outline a new dynamic
programming algorithm for sequentially estimating short
boundary segments. We then briefly discuss an algorithm
which pieces together the short segments and present some
examples of its use on complete images.

A. Image and Boundary Models

Let a digitized black and white image be represented by
a matrix with components g, corresponding to the gray
level value of a picture clement (pixel) centered at position
(i. j). The value g, will have two components—a true
picture component b, and a noise component n,; so that
8,=b, +n,;. A picture is assumed to consist of a single
region of gray level r,, lying in a background of gray level
Fourr SO that b, can take on either of the two values r;, or
Fout- The noise components n,; are assumed to be indepen-
dent identically distributed Gaussian random variables with
mean zero and variance o2, denoted n,;: N(0, 0?).

An edge clement is defined as the line segment separat-

et
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Fig. 7. Frequency tracking at CNR = — 3.0 dB. Random walk variance =0.01 rad?.
CONTINUOUS PHARSE RANDOM WALK FM
MAP FREGQUENCY ESTIMATION
LAG= 10 BLOCKS ——DECODED FREND.
R. WALK VAR. =0.10000 —— RCTURL FREQD.
CNR = -3.0 NORMRL DENSITY
B ( N,O }=(8 ,32)
T T T S VR )
|. . 2 . .32
i. R L] ;] : L.
R . 21 2 ) 2 N e 2
,“)u‘;. 2 s I . H 2
ui 3 L} 3 s 1
By I LI I L
Lo, | : “ o
u.s;-i )
o
a
o,
L/)
LL‘J .....
an
@ v
2hy
N
‘#.nb con Tadhe SR le T ATeo T whand Takieo T whmo T abty T Teeo fh.00

TIME (BELCTHT)
Fig. 8. Frequency tracking at CNR = ~ 3.0 dB. Random walk variance =0.1 rad?,

ing two adjacent pixels, and as shown in Fig. 9 a boundary
; segment consists of a directed sequence of edge elements
{1,}¥. As illustrated in Fig. 10, we assume short boundary
segments to be generated by constructing a sequence of
edge elements that terminate at the boundary of a rectan-
gular box. Longer sequences of edge elements defining

longer more complicated boundaries are obtained by exit-
ing successive rectangles R,, 1<k<N containing p, =
kx(2k—2) pixels. The key constraint built into this gener-
ating scheme is that sequences departing one rectangle
cannot re-enter it. Fig. 11(a) gives an example of a boundary
which is consistent with this model while Fig. 11(b) shows
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i Q%1 42 43 [+4 j+5

i 1y
i+ ty
1+2 ty | 1
i+3 1l
i+4 '!
i+ \,l
Bockwound’ Region
Fig. 9. A boundary segment in small picture segment.
ksl
LA

Fig. 10. Example of boundary segment gencration.

-

1

Fig. 11. Example of a boundary. (?,)| Consistent with model. (b) Incon-
sistent with model.

Fig. 12. CAT scan of abdominal section of human body.

a similar but inconsistent boundary. In the latter case the
edge sequence reenters R,. Although this scheme restricts
somewhat the types of boundary segments that can be
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Fi% 14. State transition diagram for k=1,2,--..5 illustrating a set of
haracters C, k=1,2,---,5 for a specific process realization x,, k=

vttty

priori and is a function of the boundary curvature proper-
ties for the region of interest.

Boundary segments generated by such a model are natu-
rally represented oy a sequence of states in a Markov chain
where the index parameter k for the rectangle of size p, is
also the index parameter for the Markov process. A process
state x, at “time” k, will correspond geometrically to the
end point of a boundary sequence passing out of R,. Fig.
13 shows all possible locations for x,, denoted as x{, when
k=1,2,---,5. The number of possible states at time k is 1
fork=1,3 fork=2,and 9+4(k—3) for k=3,

Note that there is only one edge sequence between any
two states x}_, and x{ which is consistent with the genera-
tion model and which does not pass through another state
xi. As a result, a boundary segment (¢}¥ is uniquely
characterized by a state sequence {x,}}.

Fig. 14 contains an abstract representation of a typical
realization of the Markov process, together with a Jdescrip-
tion of the picture or character C, associated with each
state. The observed image will be a noise corrupted version
of each such picture.

If the regions of interest have smooth, fow curvature
boundaries then a reasonable rule for assigning transition
probabilities p(x,|x,_,) is to choose p(x,|x,-,) to be
inversely related to the distance (measured in edge ele-
ments) between states x,_, and x,. We must also impose

genersted, it is still very reasonable for region boundaries the total probability constraint that

with low and slowly varying curvatures such as those in the 9+a(k-3)

body computerized axial tomography (CAT) scan shown in Y p(x{ix.-y)=1. (62)
Fig. 12. The maximuni rectangle size p,, is assumed fixed a j=1
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B. A Dynamic Programming Algorithm for Estimating
Boundary Segments

Using the pixel data in an NX2(N—1) block, R,. we
next formulate a dynamic programming algorithm for
estimating the most likely state sequence consistent with
the generation model. The algorithm is optimal in the sense
that it finds the state sequence that maximizes the joint
likelihood of the data in R, and the corresponding edge
sequence through R .

To begin we first define the pixel data sets

D, ={g,,: pixel (i, j)CR,}
d, ={g,: pixel (i, j)CR,, pixel (i, j)Z R, }.

This implies that D, =D, _,Ud,, D, =empty set. This
recursion is essential. Next let /(-) denote a log-likelihood
function, and Sy ={x,}Y denote a boundary state se-
quence of length N. Then /( Dy, Sy ), the joint log-likelihood
of a boundary .iale sequence and the picture data, must
satisfy

I(Dy, Sy)=1(Dy|Sy)+1(Sy) (63)

where I(Sy) is the log-likelihood of the state sequence S,
and I(Dy|Sy) is the pixel data log-likelihood conditjoned
on the boundary {t,}¥ described by S,. Since the state
sequence Sy is a Markov chain we can use

I(Sy)=I(Sy_))+Inp(x,|x,_,)

i(8,)=1l(x,)=InP(x,) (64)

where P(x,) is the probability of a particular starting state
x,. Since boundary edge sequences are prohibited from
reentering rectangles they have already passed out of, we
can express

I(Dy)SN)=1(Dy_,|Sy-1) +1(dy|xy) (65)

where /(d\|xy) is the log-likelihood of the data added in
extending the state sequence Sy., to S, conditioned on
the specific new state x . Substitution of (65) and (64) into
(63) leads to the following recursive expression for
I(Dy.Sy):

HDy,Sy)=UDy_,,Sy_\)+Inp(xy|xy_,)+l{dylxy).
(66)

The transition probabilities p(x,|x,_,) can be calculated
using a distance rule such as the one discussed above, while
incremental data log-likelihoods, I(d,|x,) can be calcu-
lated by observing that the pixel gray level values g;; are
N(r,y.0%) if g,; lies inside the region and N(r,,,, 0?) when
8,, lies outside the region. Furthermore, once x; has been
specified, all pixel values g,; in d; can be associated with
pixels either inside of or outside of the region. Hence if we

(b)

(c)
. Examples of algorithm performance on complete objects. (a)

Fig. 15
%llipse with additive Gaussian noise such that (r,, —r,,)/0=1. (b)
Lung section of human body, CAT scan. (c) Satellite image of a storm
cloud.

I(d|x)= 2 lnfG(gij_’in)
. pel,
+ 2 lnfG(gij_’om)
(i, NEIy
2 2
u.pel, 20 G E 20
(68)

where C is a constant which is independent of the choice of
x,, and

I, ={(i, j): pixel (i, j) is in region and g,; €d, }
I ={(i. j): pixel (i, j) is in background and g, €4, }.

Finally, a dynamic programming algorithm for estimat-
ing a state sequence S, and hence a boundary edge se-
quence {1,}V which maximizes /( Dy, Sy) can be derived by

PO AW YO TR P I

define
folx) & —=exp(-x/20%)  (67)
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observing that

max /(Dy, Sy)= max g‘ﬂl(DN—hsN-l)
L N-1

+in p(xpy|xy- ) +H(dy|xy )]

This boundary segment estimator has been incorporated
into a complete boundary estimation scheme. At the last
stage of the forward dynamic programming algorithm the
three most likely states x, are used to generate three
complete paths out of a rectangle. These are stored as
nodes on a tree, and an A* types tree search algorithm [20]
is used to picce together complete boundaries. Fig. 15
shows some examples of the overall algorithm perfor-
mance. Fig. 15(a) shows the algorithm performance on an
ellipse imbedded in Gaussian noise such that the signal-to-
noise ratio (7, — 7., )/0=1. Both the actual and estimated
boundaries are plotted. Fig. 15(b) shows the boundary
obtained for a section of the CAT scan given in Fig. 12,
and Fig. 15(c) shows the result of estimating the boundary
of a satellite image of a cloud.

VII. CONCLUDING REMARKS

By constructing finite-state Markov chains, and assign-
ing characters or observations to these states, one can
model such things as continuous-phase FM signals and
random boundaries in black and white images. The model
may then be used to construct a likelihood function that
may be written recursively and maximized with the tech-
niques of dynamic programming. The resulting algorithms
are tractable by nonlinear filtering and image processing
standards, and the results often superior to what can be
achieved with other approaches.

A great variety of signal and image processing problems
may be phrased along the lines of this paper, and solved
using the techniques of dynamic programming. This chain
illustrates once again the great power of dynamic program-
ming as a recursive optimization device.
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BRIEF OUTLINE OF RESEARCH FINDINGS

and data decoding on random phase channels.

theory of chains, and

conventional models.

myth regarding frequency tracking at low signal-to-noise ratios.
probably be published shortly.

study and software development will begin soon.

The algorithm - though complex - outperforms all competitors.

Page 2

We are pursuing research on three distinct but related problems:
(1) phase model extension to include random phase modulation, random FM
modulation, and random chirp modulation; (2) frequency estimation in
signal-plus-noise and autoregressive models; (3) dynamic programming
algorithm development for FM tracking; and (4) simultaneous phase tracking

(1) Phase Model Extension: Here we have derived phase models for random
phase, random FM, and random chirp modulation. Each model is a Markov chain
defined on cyclic group. Covariance and spectral results have been derived.

The results - not yet gublished - generalize existing results on the spectral
eave us with the problem of selecting states, transi-

tion probabilities, and "run lengths" to achieve model matching with more

(2) Frequency Estimation: We have derived maximum likelihood frequency

estimators and Cramer-Rao bounds for estimating frequency in complex normal
signal-plus-noise and autoregressive models. The estimators have been simu-
lated and modulo-2n errors studied. The results explode a currently popular

Work will

(3) Dynamic Programming Algorithm Development: In reports (a) and (b)

under item 7 of this document we have derived a dynamic programming algorithm
for picking the optimum frequency track through a sequence of contiguous FFT
maps to decode the MAP frequency sequence. Algorithm properties are under

(4) Simultaneous Phase Tracking and Data Decoding: A principle of opti-
mality for phase tracking/data decoding has been derived and implemented in
software to decode data symbols transmitted over random phase chanmels.
Algorithm performance is treated in report (c) under item 7 of this report.
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The last progress report contained a complete list of accomplishments and

ongoing work. That outline remains in force, with the addition of the
following

a. Phase Model Extension. We are in the process of writing up our work
on phase models on the circle. This work could lead the way to fiiltering
on finite groups, a topic I raised to ARO in a letter to Suttle a year ago.

b. ARMA Systems. We have reformulated the autoregressive moving average
(ARMA) modelling problem in terms of linear transformations, rather than
linear filters. It's too early toc give a prognosis, but new insights

are developing. An invited paper for IEEE Trans on ASSP is in progress.

Page 2
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Colorado State Universily
Department of Electrical Engineering Fort Collins, Colorado

80523

June 11, 1980

Dr. Jimmie R. Suttle, Director
Electronics Division

U.S. Army Research Office

P.0. Box 12211

Research Triangle Park, NC 27709

Dear Dr. Suttle:
Here is my brief report on scientific accomplishments.

PROJECT: Viterbi Tracking of Randomly Phase Modulated Data
DAAG29~79-C-0176

OUTLINE: At Colorado State University the principal investigator and

his associates are working on a nonlinear smoothing theory for randomly
phase- and frequency-modulated information. The investigator's phase
tracker has been generalized to a frequency tracker. Simulation and
theoretical performance evaluations are in progress. Analytical investi-
gation of Markov chains as approximants to FM signals is proceeding.

Application of these results arise in 1) detection and estimation
of feeble sinusoidal signals (such as oscillation modes), 2) phase
synchronization of data transmission systems, and 3) decoding of fre-
quency-hopped FM signals.

INTERACTIONS: Irv Kullback, U.S. Army personnel, and USC Research group
at Ft. Monmouth, May 29, 1980, (Meeting organized by Dr. Wm. Sander ,
ARQ).

Louis L. Scharf
Professor
Electrical Engineering
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Recent Outstanding Accamplislunent: @ DAY -79~=0176
July 12, 1982

The problem of FMdemodulation has a long history of roocarch aned
development in electrigal engineering. In its modern form the problan
is to estimate phase Or frequency sequences fram noiny data and Lo use
these estimates in conventional and spread spectrum communication systems.

The principal investigator and his associates have Jevelouped models
for random phase and frequency sequences and derived likelihood expressions
for noisy observations of tham. The investigator:s have applicd dynamic
programming to find an algori for canputing the maximum of the likelihood.
The algorithm has been applied the decoding of binary, phasc-shift—keyed,
and quadrature-shift~keyed data sequences.

The results of this research suggest that there are numerous ronlincar
filtering probiems in signal and image processing that can be formulated
and solved as nonlineag sequence estimation problems. Among the possibilities
are boundary &stimatigg
reconstructive in nois
noisy measurements.

in noisy black and white inages, tomouraphic image
CAT Scans, and vehicle trackinyg from incomplete and

- prrvon



- - - - . e

APPENDIX C : Army Sponsored Meetings Attended by Pl

The Principal Investigator attended the following ARO-sponsored meetings
at Fort Monmouth:

Spread Spectrum, 29 May 1980
Fort Monmouth, New Jersey

Spread Spectrum Seminar, 22 May 1981
Fort Monmouth, New Jersey

At the 22 May 1981 meeting he presented a paper titled,

"Viterbi Tracking of Randomly Phase-Modulated Date"
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TENTATIVE AGENDA

SPREAD SPECTRUM SEMINAR
Fort Monmouth, NJ

May 22, 1981

Army Presentations
Break

Spread Spectrum Receiver Using SAW Devices
Prof. Pankaj Das, Rennselaer Polytechnic Insitute

Viterbi Tracking of Randomly Phase Modulated Data
Prof. Louis Scharf, Colorado State University

Lunch

Research in Digital Communications
Prof. Robert Scholtz, University of Southern California
Prof. William Lindsey, University of Southern California

Break

Spread Spectrum Communications

Prof. Michael Pursley, University of I1linois
Prof. Robert McEliece, University of Il1linois

Closing







